hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)
Posted xiuwenli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)相关的知识,希望对你有一定的参考价值。
要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值
分析:二分图带权最大独立集.
用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, S向X部的点建边,Y部向T建边,容量为该点权值.
相邻的一对点(肯定是一奇一偶),由X中的点向Y中的点建边,容量为正无穷.
最后跑出最大流,|带权最大独立集| = |点权之和| - |最小割| = |点权之和| - |最大流|
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<algorithm>
#include<string>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN=3010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype int
struct SAP_MaxFlow{
struct Edge{
int from,to,next;
captype cap;
}edges[MAXM];
int tot,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN];
void init(){
tot=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[tot] = (Edge){u,v,head[u],c}; head[u]=tot++;
edges[tot] = (Edge){v,u,head[v],rc}; head[v]=tot++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F;
int G[55][55];
int dir[4][2] = {1,0,-1,0,0,1,0,-1};
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
int u,v,tmp;
while(scanf("%d %d",&N, &M)==2){
int S = 0,T = N*M+1;
int sum =0;
F.init();
for(int i=1;i<=N;++i){
for(int j=1;j<=M;++j){
scanf("%d",&tmp);
G[i][j] = tmp;
sum+=tmp;
}
}
for(int i=1;i<=N;++i){
for(int j=1;j<=M;++j){
int id = (i-1)*M +j;
if((i+j)&1){
F.AddEdge(S,id,G[i][j]);
for(int k=0;k<4;++k){
int nx = i+ dir[k][0];
int ny = j+ dir[k][1];
if(nx<1 || nx>N || ny<1 ||ny>M) continue;
int nid = (nx-1)*M + ny;
F.AddEdge(id,nid,INF);
}
}
else{
F.AddEdge((i-1)*M+j,T,G[i][j]);
}
}
}
int flow = F.maxFlow_sap(S,T,T+1);
int res = sum - flow;
printf("%d
",res);
}
return 0;
}
以上是关于hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)的主要内容,如果未能解决你的问题,请参考以下文章
hdu 1829 &poj 2492 A Bug's Life(推断二分图带权并查集)
hdu 1565&hdu 1569(网络流--最小点权值覆盖)
HDU 1565&1569 方格取数系列(状压DP或者最大流)