Which dispatch method would be used in Swift?
Posted feng9exe
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Which dispatch method would be used in Swift?相关的知识,希望对你有一定的参考价值。
In this example:
protocol MyProtocol {
func testFuncA()
}
extension MyProtocol {
func testFuncA() {
print("MyProtocol‘s testFuncA")
}
}
class MyClass : MyProtocol {}
let object: MyClass = MyClass()
object.testFuncA()
static dispatch is used. The concrete type of object is known at compile time; it‘s MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.
So to answer your individual questions:
MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:
protocol MyProtocol {
func testFuncA()
}
extension MyProtocol {
// No entry in MyClass‘ Swift v-table.
// (but an entry in MyClass‘ protocol witness table for conformance to MyProtocol)
func testFuncA() {
print("MyProtocol‘s testFuncA")
}
}
class MyClass : MyProtocol {
// An entry in MyClass‘ Swift v-table.
func foo() {}
}
extension MyClass {
// No entry in MyClass‘ Swift v-table (this is why you can‘t override
// extension methods without using Obj-C message dispatch).
func bar() {}
}
There are no existential containers in the code:
let object: MyClass = MyClass()
object.testFuncA()
Existential containers are used for protocol-typed instances, such as your first example:
let object: MyProtocol = MyClass()
object.testFuncA()
The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we‘re dealing with dynamic dispatch).
A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).
You can do so by running the following (note it‘s best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):
swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen
Let‘s take a look at the SIL for the first example in this answer. Here‘s the main function, which is the entry-point of the program:
// main
sil @main : [email protected](c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):
alloc_global @main.object : main.MyClass // id: %2
%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7
// function_ref MyClass.__allocating_init()
%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : [email protected](method) (@thick MyClass.Type) -> @owned MyClass // user: %6
%5 = metatype [email protected] MyClass.Type // user: %6
%6 = apply %4(%5) : [email protected](method) (@thick MyClass.Type) -> @owned MyClass // user: %7
store %6 to %3 : $*MyClass // id: %7
// Get a reference to the extension method and call it (static dispatch).
// function_ref MyProtocol.testFuncA()
%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : [email protected](method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12
%9 = load %3 : $*MyClass // user: %11
%10 = alloc_stack $MyClass // users: %11, %13, %12
store %9 to %10 : $*MyClass // id: %11
%12 = apply %8<MyClass>(%10) : [email protected](method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()
dealloc_stack %10 : $*MyClass // id: %13
%14 = integer_literal $Builtin.Int32, 0 // user: %15
%15 = struct $Int32 (%14 : $Builtin.Int32) // user: %16
return %15 : $Int32 // id: %16
} // end sil function ‘main‘
The bit that we‘re interested in here is this line:
%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : [email protected](method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12
The function_ref instruction gets a reference to a function known at compile-time. You can see that it‘s getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.
Let‘s now take a look at what happens when we make the call like this:
let object: MyProtocol = MyClass()
object.testFuncA()
The main function now looks like this:
// main
sil @main : [email protected](c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):
alloc_global @main.object : main.MyProtocol // id: %2
%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4
// Create an opaque existential container and get its address (%4).
%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8
// function_ref MyClass.__allocating_init()
%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : [email protected](method) (@thick MyClass.Type) -> @owned MyClass // user: %7
%6 = metatype [email protected] MyClass.Type // user: %7
%7 = apply %5(%6) : [email protected](method) (@thick MyClass.Type) -> @owned MyClass // user: %8
// Store the MyClass instance in the existential container.
store %7 to %4 : $*MyClass // id: %8
// Open the existential container to get a pointer to the MyClass instance.
%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10
// Dynamically lookup the function to call for the testFuncA requirement.
%10 = witness_method [email protected]("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : [email protected](witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11
// Call the function we looked-up for the testFuncA requirement.
%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : [email protected](witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9
%12 = integer_literal $Builtin.Int32, 0 // user: %13
%13 = struct $Int32 (%12 : $Builtin.Int32) // user: %14
return %13 : $Int32 // id: %14
} // end sil function ‘main‘
There are some key differences here.
An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).
The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).
Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass‘s conformance, which is listed at the bottom of the generated SIL:
sil_witness_table hidden MyClass: MyProtocol module main {
method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass
}
This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:
// protocol witness for MyProtocol.testFuncA() in conformance MyClass
sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : [email protected](witness_method) (@in_guaranteed MyClass) -> () {
// %0 // user: %2
bb0(%0 : $*MyClass):
%1 = alloc_stack $MyClass // users: %7, %6, %4, %2
copy_addr %0 to [initialization] %1 : $*MyClass // id: %2
// Get a reference to the extension method and call it.
// function_ref MyProtocol.testFuncA()
%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : [email protected](method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4
%4 = apply %3<MyClass>(%1) : [email protected](method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()
%5 = tuple () // user: %8
destroy_addr %1 : $*MyClass // id: %6
dealloc_stack %1 : $*MyClass // id: %7
return %5 : $() // id: %8
} // end sil function ‘protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main‘
and sure enough, its getting a function_ref to the extension method, and calling that function.
The looked-up witness function is then called after the witness_method lookup with the line:
%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : [email protected](witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9
So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.
We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I‘m happy to clarify anything you may be unsure about.
https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift
以上是关于Which dispatch method would be used in Swift?的主要内容,如果未能解决你的问题,请参考以下文章
Which HTTP methods match up to which CRUD methods?
Method Dispatch in Protocol Extensions
多态,动态方法调度(dynamic method dispatch)?
The Struts dispatcher cannot be found异常的解决方法
SSM整合 运行报Handler dispatch failed; nested exception is java.lang.AbstractMethodError: Method com/mcha
SSM整合 运行报Handler dispatch failed; nested exception is java.lang.AbstractMethodError: Method com/mcha