时间复杂度
Posted xiaocao123
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了时间复杂度相关的知识,希望对你有一定的参考价值。
时间复杂度
本篇文章参考:https://www.jianshu.com/p/f4cca5ce055a
我们假设计算机运行一行基础代码需要执行一次运算。
1 int aFunc(void) {
2 printf("Hello, World!
"); // 需要执行 1 次
3 return 0; // 需要执行 1 次
4 }
那么上面这个方法需要执行 2 次运算
1 int aFunc(int n) {
2 for(int i = 0; i<n; i++) { // 需要执行 (n + 1) 次
3 printf("Hello, World!
"); // 需要执行 n 次
4 }
5 return 0; // 需要执行 1 次
6 }
这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。
我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。
即T(n)可以看做是一个关于n(n不是程序运行的次数)的函数。
定义: 存在常数 c,使得当 N >= c 时 T(N) <= f(N),表示为 T(n) = O(f(n)) 。
如图:
当 N >= 2 的时候,f(n) = n^2 总是大于 T(n) = n + 2 的,于是我们说 f(n) 的增长速度是大于或者等于 T(n) 的,也说 f(n) 是 T(n) 的上界,可以表示为 T(n) = O(f(n))。
因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。
此时为了 估算算法需要的运行时间 和 简化算法分析,我们引入时间复杂度的概念。
算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。
那么当我们拿到算法的执行次数函数 T(n) 之后怎么得到算法的时间复杂度呢?
- 我们知道常数项并不影响函数的增长速度,所以当 T(n) = c,c 为一个常数的时候,我们说这个算法的时间复杂度为 O(1);如果 T(n) 不等于一个常数项时,直接将常数项省略。
比如
第一个 Hello, World 的例子中 T(n) = 2,所以我们说那个函数(算法)的时间复杂度为 O(1)。
T(n) = n + 29,此时时间复杂度为 O(n)。
- 我们知道高次项对于函数的增长速度的影响是最大的。n^3 的增长速度是远超 n^2 的,同时 n^2 的增长速度是远超 n 的。 同时因为要求的精度不高,所以我们直接忽略低此项。
比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。
- 因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数。
比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。
综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))。为了方便描述,下文称此为 大O推导法
- 对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。void aFunc(int n) { for(int i = 0; i < n; i++) { // 循环次数为 n printf("Hello, World! "); // 循环体时间复杂度为 O(1) } }
此时时间复杂度为 O(n × 1),即 O(n)。
- 对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c...,则这个循环的时间复杂度为 O(n×a×b×c...)。分析的时候应该由里向外分析这些循环。
void aFunc(int n) { for(int i = 0; i < n; i++) { // 循环次数为 n for(int j = 0; j < n; j++) { // 循环次数为 n printf("Hello, World! "); // 循环体时间复杂度为 O(1) } } }
此时时间复杂度为 O(n × n × 1),即 O(n^2)。
- 对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。
void aFunc(int n) { // 第一部分时间复杂度为 O(n^2) for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { printf("Hello, World! "); } } // 第二部分时间复杂度为 O(n) for(int j = 0; j < n; j++) { printf("Hello, World! "); } }
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
- 对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。
void aFunc(int n) { if (n >= 0) { // 第一条路径时间复杂度为 O(n^2) for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { printf("输入数据大于等于零 "); } } } else { // 第二条路径时间复杂度为 O(n) for(int j = 0; j < n; j++) { printf("输入数据小于零 "); } } }
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
常见的时间复杂度:
执行次数函数 | 阶 | 术语描述 |
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+1 | O(n2) | 平方阶 |
5log2n+20 | O(log2n) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlog2n阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
时间复杂度所耗费的时间是:
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) <O(2n) < O(n!) <O(nn)
以上是关于时间复杂度的主要内容,如果未能解决你的问题,请参考以下文章