POJ 1704 Georgia and Bob(阶梯博弈)题解

Posted kirinsb

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1704 Georgia and Bob(阶梯博弈)题解相关的知识,希望对你有一定的参考价值。

题意:有一个一维棋盘,有格子标号1,2,3,......有n个棋子放在一些格子上,两人博弈,只能将棋子向左移,不能和其他棋子重叠,也不能跨越其他棋子,不能超越边界,不能走的人输

思路:可以用阶梯博弈来做。

那么先简单讲一下阶梯博弈:

有一个x阶阶梯,每一阶都有一定数量的石头,每次只能把某一阶梯上任意数量(不为0)的石头往下移动一阶,最多只能移动到地面,不能移动的败。这里先手的策略是这样:对奇数阶阶梯的石子进行Nim博弈,异或和为0必败。为什么不用考虑偶数呢?因为如果后手的人把m颗石头从2*n阶移到2*n-1阶,那么先手的可以把m颗石头从2*n-1阶移到2*n-2阶,重复操作直到到0阶即地面,所以我们可以不考虑偶数阶的石子数。所以奇数阶的石子被移到下一阶时,我们可以直接认为这些石头被移除了。那么直接Nim博弈就可以了。

返回这道题,如图,假如我们把棋子A向左移动一定数量,那么我们可以把棋子B向左移动相同数量来保证AB间隔不变,这里就和阶梯博弈时移动偶数阶石子奇数阶石子数量不变是一样的。所以我们从最后一个棋子开始往前分组,两个一组,每一组的间隔就是奇数阶石子个数。讲一下为什么从最后面开始分,因为最后一个间隔不会因为其他间隔的变化而变小,所以必须作为奇数阶石子保持不变(强行这样理解)。

技术分享图片

参考:阶梯博弈算法详解(尼姆博弈进阶)

代码:

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = 1000 + 10;
const int seed = 131;
const ll MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
int a[maxn];
int main(){
    int T, n;
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        sort(a + 1, a + n + 1);
        int ans = 0;
        for(int i = n; i > 0; i -= 2){
            ans ^= (a[i] - a[i - 1] - 1);
        }
        if(ans == 0) printf("Bob will win
");
        else printf("Georgia will win
");
    }
    return 0;
}

 

以上是关于POJ 1704 Georgia and Bob(阶梯博弈)题解的主要内容,如果未能解决你的问题,请参考以下文章

POJ 1704 Georgia and Bob

POJ 1704 Georgia and Bob(阶梯博弈+证明)

POJ 1704 Georgia and Bob(阶梯博弈)

POJ1704 Georgia and Bob(Staircase Nim)

POJ1704 Georgia and Bob (阶梯博弈)

POJ1704Georgia and Bob(博弈论)