数据分析---用pandas进行数据清洗(Data Analysis Pandas Data Munging/Wrangling)

Posted huzihu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据分析---用pandas进行数据清洗(Data Analysis Pandas Data Munging/Wrangling)相关的知识,希望对你有一定的参考价值。

这里利用ben的项目(https://github.com/ben519/DataWrangling/blob/master/Python/README.md),在此基础上增添了一些内容,来演示数据清洗的主要工作。

 

以下是一份简单的交易数据,包括交易单号,交易日期,产品序号,交易数量,单价,总价。

技术分享图片

 

准备工作:导入pandas

import pandas as pd

 

数据读取: pd.read_excel, pd.read_csv, pd.read_json, pd.read_sql...

transactions=pd.read_excel(r...	ransactions.xlsx)
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
0               1       2010-08-21          2        1         30          30
1               2       2011-05-26          4        1         40          40
2               3       2011-06-16          3      NaN         32          32
3               4       2012-08-26          2        3         55         165
4               5       2013-06-06          4        1        124         124
5               1       2010-08-21          2        1         30          30
6               7       2013-12-30                                           
7               8       2014-04-24          2        2        NaN         NaN
8               9       2015-04-24          4        3         60        1800
9              10       2016-05-08          4        4          9          36

 

获取数据信息:xx.info()

print(transactions.info())
RangeIndex: 10 entries, 0 to 9
Data columns (total 6 columns):
Transaction_ID      10 non-null int64
Transaction_Date    10 non-null datetime64[ns]
Product_ID          10 non-null object
Quantity            9 non-null object
Unit_Price          9 non-null object
Total_Price         9 non-null object
dtypes: datetime64[ns](1), int64(1), object(4)
memory usage: 560.0+ bytes
None

显示了数据各列的基本信息,比如:Transaction_ID有10个不为空的值,数据类型是int64; Quantity有9个不为空的值(说明有一个缺失值),数据类型是object;等等。

 

获取数据总行列数信息: xx.shape

print(transactions.shape)
(10, 6)

显示了数据共有10行6列。

 

获取所有行索引: xx.index.values

print(transactions.index.values)
[0 1 2 3 4 5 6 7 8 9]

 

获取所有列名: xx.columns.values

print(transactions.columns.values)
[Transaction_ID Transaction_Date Product_ID Quantity Unit_Price
 Total_Price]

 

选取某一行: xx.loc([row_index_name]) 显式 ;      xx.iloc([row_index_from_zero]) 隐式

print(transactions.loc[1])
Transaction_ID                        2
Transaction_Date    2011-05-26 00:00:00
Product_ID                            4
Quantity                              1
Unit_Price                           40
Total_Price                          40
Name: 1, dtype: object

选取了数据的第二行。此数据行索引是从0开始一直到9,因此显式选取和隐式选取都一样。

 

选取某一列: xx[‘column_name‘]

print(transactions[Product_ID])
0       2
1       4
2       3
3       2
4       4
5       2
6        
7       2
8       4
9       4
Name: Product_ID, dtype: object

 

选取连续多行: xx.loc([row_index_name1: row_index_name2]) 显式 ;      xx.iloc([row_index_from_zero1: row_index_from_zero2]) 隐式

print(transactions.iloc[2:4])
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
2               3       2011-06-16          3      NaN         32          32
3               4       2012-08-26          2        3         55         165

 

选取连续多列: xx.loc([ :, ‘column_name1‘: ‘column_name2‘]) 显式 ;      xx.iloc([ :, column_index_from_zero1: column_index_from_zero2]) 隐式

print(transactions.loc[:,Product_ID:Total_Price])
  Product_ID Quantity Unit_Price Total_Price
0          2        1         30          30
1          4        1         40          40
2          3      NaN         32          32
3          2        3         55         165
4          4        1        124         124
5          2        1         30          30
6                                           
7          2        2        NaN         NaN
8          4        3         60        1800
9          4        4          9          36

 

选取连续某几行某几列的数据: xx.loc([row_index_name1: row_index_name2, ‘column_name1‘: ‘column_name2‘]) 显式 ;      xx.iloc([row_index_from_zero1: row_index_from_zero2, column_index_from_zero1: column_index_from_zero2]) 隐式

print(transactions.iloc[2:4,2:4])
  Product_ID Quantity
2          3      NaN
3          2        3

 

选取不连续的多行: xx.loc([[row_index_name1,row_index_name2, ...]]) 显式 ;      xx.iloc([[row_index_from_zero1, row_index_from_zero2, ...]]) 隐式

print(transactions.iloc[[1,4]])
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
1               2       2011-05-26          4        1         40          40
4               5       2013-06-06          4        1        124         124

 

选取不连续的多列: xx.loc([ :, [column_name1, column_name2, ...]]) 显式 ;      xx.iloc([ :, [column_index_from_zero1, column_index_from_zero2, ...]]) 隐式

print(transactions.iloc[:,[1,4]])
  Transaction_Date Unit_Price
0       2010-08-21         30
1       2011-05-26         40
2       2011-06-16         32
3       2012-08-26         55
4       2013-06-06        124
5       2010-08-21         30
6       2013-12-30           
7       2014-04-24        NaN
8       2015-04-24         60
9       2016-05-08          9

 

添加行: xx.loc(new_row_index)=[.....]

transactions.loc[10]=[11,"2018-9-9",1,4,2,8]
    Transaction_ID     Transaction_Date Product_ID Quantity Unit_Price  0                1  2010-08-21 00:00:00          2        1         30   
1                2  2011-05-26 00:00:00          4        1         40   
2                3  2011-06-16 00:00:00          3      NaN         32   
3                4  2012-08-26 00:00:00          2        3         55   
4                5  2013-06-06 00:00:00          4        1        124   
5                1  2010-08-21 00:00:00          2        1         30   
6                7  2013-12-30 00:00:00                                  
7                8  2014-04-24 00:00:00          2        2        NaN   
8                9  2015-04-24 00:00:00          4        3         60   
9               10  2016-05-08 00:00:00          4        4          9   
10              11             2018-9-9          1        4          2   

   Total_Price  
0           30  
1           40  
2           32  
3          165  
4          124  
5           30  
6               
7          NaN  
8         1800  
9           36  
10           8 

 

添加列:xx[‘new_column_name‘]=[.....]

transactions[Unit_Profit]=[3,5,8,20,9,4,"",33,5,1]
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price  0               1       2010-08-21          2        1         30          30   
1               2       2011-05-26          4        1         40          40   
2               3       2011-06-16          3      NaN         32          32   
3               4       2012-08-26          2        3         55         165   
4               5       2013-06-06          4        1        124         124   
5               1       2010-08-21          2        1         30          30   
6               7       2013-12-30                                              
7               8       2014-04-24          2        2        NaN         NaN   
8               9       2015-04-24          4        3         60        1800   
9              10       2016-05-08          4        4          9          36   

  Unit_Profit  
0           3  
1           5  
2           8  
3          20  
4           9  
5           4  
6              
7          33  
8           5  
9           1  

 

在指定位置插入列: xx.insert(column_index, ‘new_column_name‘,[...])

transactions.insert(5,Unit_Profit,[3,5,8,20,9,4,"",33,5,1])
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Unit_Profit  0               1       2010-08-21          2        1         30           3   
1               2       2011-05-26          4        1         40           5   
2               3       2011-06-16          3      NaN         32           8   
3               4       2012-08-26          2        3         55          20   
4               5       2013-06-06          4        1        124           9   
5               1       2010-08-21          2        1         30           4   
6               7       2013-12-30                                              
7               8       2014-04-24          2        2        NaN          33   
8               9       2015-04-24          4        3         60           5   
9              10       2016-05-08          4        4          9           1   

  Total_Price  
0          30  
1          40  
2          32  
3         165  
4         124  
5          30  
6              
7         NaN  
8        1800  
9          36  

 

删除行:xx.drop(row_index_from_zero,axis=0)

transactions=transactions.drop(8,axis=0)
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
0               1       2010-08-21          2        1         30          30
1               2       2011-05-26          4        1         40          40
2               3       2011-06-16          3      NaN         32          32
3               4       2012-08-26          2        3         55         165
4               5       2013-06-06          4        1        124         124
5               1       2010-08-21          2        1         30          30
6               7       2013-12-30                                           
7               8       2014-04-24          2        2        NaN         NaN
9              10       2016-05-08          4        4          9          36

 

删除列: xx.drop(‘column_name‘,axis=1)

transactions=transactions.drop(Total_Price,axis=1)
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price
0               1       2010-08-21          2        1         30
1               2       2011-05-26          4        1         40
2               3       2011-06-16          3      NaN         32
3               4       2012-08-26          2        3         55
4               5       2013-06-06          4        1        124
5               1       2010-08-21          2        1         30
6               7       2013-12-30                               
7               8       2014-04-24          2        2        NaN
8               9       2015-04-24          4        3         60
9              10       2016-05-08          4        4          9

 

数据转置:  xx.T

print(transactions.T)
                                    0                    1  Transaction_ID                      1                    2   
Transaction_Date  2010-08-21 00:00:00  2011-05-26 00:00:00   
Product_ID                          2                    4   
Quantity                            1                    1   
Unit_Price                         30                   40   
Total_Price                        30                   40   

                                    2                    3  Transaction_ID                      3                    4   
Transaction_Date  2011-06-16 00:00:00  2012-08-26 00:00:00   
Product_ID                          3                    2   
Quantity                          NaN                    3   
Unit_Price                         32                   55   
Total_Price                        32                  165   

                                    4                    5  Transaction_ID                      5                    1   
Transaction_Date  2013-06-06 00:00:00  2010-08-21 00:00:00   
Product_ID                          4                    2   
Quantity                            1                    1   
Unit_Price                        124                   30   
Total_Price                       124                   30   

                                    6                    7  Transaction_ID                      7                    8   
Transaction_Date  2013-12-30 00:00:00  2014-04-24 00:00:00   
Product_ID                                               2   
Quantity                                                 2   
Unit_Price                                             NaN   
Total_Price                                            NaN   

                                    8                    9  
Transaction_ID                      9                   10  
Transaction_Date  2015-04-24 00:00:00  2016-05-08 00:00:00  
Product_ID                          4                    4  
Quantity                            3                    4  
Unit_Price                         60                    9  
Total_Price                      1800                   36  

有时候需要把行和列进行交换,数据才更容易看懂(尽管这里不需要)。

 

查找重复值: xx.duplicated()

print(transactions.duplicated())
0    False
1    False
2    False
3    False
4    False
5     True
6    False
7    False
8    False
9    False
dtype: bool

数据第6行(索引为5)是重复的(需要每列的数据都重复)。

 

删除重复值: xx.drop_duplicates()

transactions=transactions.drop_duplicates()
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
0               1       2010-08-21          2        1         30          30
1               2       2011-05-26          4        1         40          40
2               3       2011-06-16          3      NaN         32          32
3               4       2012-08-26          2        3         55         165
4               5       2013-06-06          4        1        124         124
6               7       2013-12-30                                           
7               8       2014-04-24          2        2        NaN         NaN
8               9       2015-04-24          4        3         60        1800
9              10       2016-05-08          4        4          9          36

数据第6行已被删除。

 

查找缺失值: xx.isnull() ;    xx.notnull()

print(transactions[transactions[Unit_Price].isnull()])
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
7               8       2014-04-24          2        2        NaN         NaN

显示了Unit_Price有缺失值的一行数据。

 

删除缺失值: xx.dropna(how=..., axis=...)     注:how="any"或"all", axis=0或1

transactions=transactions.dropna(axis=0)
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
0               1       2010-08-21          2        1         30          30
1               2       2011-05-26          4        1         40          40
3               4       2012-08-26          2        3         55         165
4               5       2013-06-06          4        1        124         124
5               1       2010-08-21          2        1         30          30
6               7       2013-12-30                                           
8               9       2015-04-24          4        3         60        1800
9              10       2016-05-08          4        4          9          36

 

填补缺失值: xx.fillna(value=..., axis=...)     注:axis=0或1

transactions[Unit_Price]=transactions[Unit_Price].fillna(value=35)
   Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price
0               1       2010-08-21          2        1         30          30
1               2       2011-05-26          4        1         40          40
2               3       2011-06-16          3      NaN         32          32
3               4       2012-08-26          2        3         55         165
4               5       2013-06-06          4        1        124         124
5               1       2010-08-21          2        1         30          30
6               7       2013-12-30                                           
7               8       2014-04-24          2        2         35         NaN
8               9       2015-04-24          4        3         60        1800
9              10       2016-05-08          4        4          9          36

 

去除空格: 先把空格替换成NaN,再提取没有缺失值的数据

import numpy as np
transactions=transactions.applymap(lambda x: np.NaN if str(x).isspace() else x)
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               2       2011-05-26         4.0       1.0        40.0   
2               3       2011-06-16         3.0       NaN        32.0   
3               4       2012-08-26         2.0       3.0        55.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               1       2010-08-21         2.0       1.0        30.0   
6               7       2013-12-30         NaN       NaN         NaN   
7               8       2014-04-24         2.0       2.0         NaN   
8               9       2015-04-24         4.0       3.0        60.0   
9              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  
0         30.0  
1         40.0  
2         32.0  
3        165.0  
4        124.0  
5         30.0  
6          NaN  
7          NaN  
8       1800.0  
9         36.0  

注:如果替换某行或某列的空格,用apply;如果替换整体数据的空格,则用applymap

 

大小写转换: xx.str.lower() ;    xx.str.upper()

演示省略。。

 

转换数据类型:xx.astype(data_type_to_be_transferred_to)      注:可转换的数据类型有:int, str, float ...  ;     转换成时间序列: pd.to_datetime(...)

transactions[Transaction_Date]=pd.to_datetime(transactions[Transaction_Date])

注:需要先把数据内的缺失值处理干净,否则会产生错误

 

使用掩码进行条件筛选: xx[mask]              注:一些条件表示方法:&(and) ,|(or),-(not),isin(in)

print(transactions[(transactions[Quantity]==1) & (transactions[Unit_Price]>100)])
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  4               5       2013-06-06         4.0       1.0       124.0   

   Total_Price  
4        124.0  

这里选取了交易数量为1并且单价超过100的数据(删除了所有缺失值后)。

 

条件筛选后选取符合条件的某一列数据: xx.loc[xx[mask],‘column_name‘]

print(transactions.loc[((transactions[Quantity]==1) & (transactions[Unit_Price]>100)),Product_ID])
4    4.0
Name: Product_ID, dtype: float64

这里选取了交易数量为1并且单价超过100的物品的Produxt_ID(删除了所有缺失值后)。

 

查找异常值: 通过掩码过滤,在这里以Upper Quartile+1.5*IQR和Lower Quartile-1.5*IQR为上下限

print(transactions.describe())
upper_extrme=144.5+1.5*(144.5-33)
lower_extrme=33-1.5*(144.5-33)
print(transactions.loc[((transactions[Total_Price]>upper_extrme) | (transactions[Total_Price]<lower_extrme))])
       Transaction_ID  Product_ID  Quantity  Unit_Price  Total_Price
count        7.000000    7.000000  7.000000    7.000000     7.000000
mean         4.571429    3.142857  2.000000   49.714286   317.857143
std          3.690399    1.069045  1.290994   36.926568   655.752095
min          1.000000    2.000000  1.000000    9.000000    30.000000
25%          1.500000    2.000000  1.000000   30.000000    33.000000
50%          4.000000    4.000000  1.000000   40.000000    40.000000
75%          7.000000    4.000000  3.000000   57.500000   144.500000
max         10.000000    4.000000  4.000000  124.000000  1800.000000
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  8               9       2015-04-24         4.0       3.0        60.0   

   Total_Price  
8       1800.0

先通过describe函数查看数据整体分布情况,然后计算出Total_Price的上下限,通过掩码选取Total_Price超过上限或低于下限的行。在这里可以看到,有一个异常值1800,原因是多写了一个0。

 

替换异常值: xx.replace(to_replace, old_value, inplace=True)

transactions[Total_Price].replace(1800,180,inplace=True)
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               2       2011-05-26         4.0       1.0        40.0   
3               4       2012-08-26         2.0       3.0        55.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               1       2010-08-21         2.0       1.0        30.0   
8               9       2015-04-24         4.0       3.0        60.0   
9              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  
0         30.0  
1         40.0  
3        165.0  
4        124.0  
5         30.0  
8        180.0  
9         36.0  

把上面查找出来的异常值1800替换成了180。

 

累计: 累计方法有:count(), mean(), median(), min(), max(), std(), prod(), sum(), ...

print(transactions[Total_Price].sum())
2225.0

显示了Total_Price的合计数目。

 

数据分组:xx.groupby(...)

print(transactions.groupby(Product_ID)[Quantity].sum())
Product_ID
2.0    5.0
4.0    9.0
Name: Quantity, dtype: float64

显示了按照Product_ID分组的交易数量的总和。(注:transactions.groupby(‘Product_ID‘)是一个数据分组的对象,它实际上还没有进行任何计算,只是一个暂时存储的容器,要使用累计函数后才会进行计算。因此,groupby一般与累计函数搭配使用。)

print(transactions.groupby(Product_ID)[Quantity].agg([sum,mean]))
            sum      mean
Product_ID               
2.0         5.0  1.666667
4.0         9.0  2.250000

如果需要进行两个及以上项目的累计,可以使用agg函数。

 

计数: xx.value_counts()

print(transactions[Product_ID].value_counts())
4.0    4
2.0    3
Name: Product_ID, dtype: int64

 

更改某个列名: xx.rename(columns={‘old_column_name‘:‘new_column_name‘}, inplace=True)

transactions.rename(columns={Unit_Price:UP},inplace=True)
   Transaction_ID Transaction_Date  Product_ID  Quantity     UP  Total_Price
0               1       2010-08-21         2.0       1.0   30.0         30.0
1               2       2011-05-26         4.0       1.0   40.0         40.0
3               4       2012-08-26         2.0       3.0   55.0        165.0
4               5       2013-06-06         4.0       1.0  124.0        124.0
5               1       2010-08-21         2.0       1.0   30.0         30.0
8               9       2015-04-24         4.0       3.0   60.0       1800.0
9              10       2016-05-08         4.0       4.0    9.0         36.0

 

更改索引: xx.set_index()

transactions.set_index(Transaction_Date,inplace=True)
                  Transaction_ID  Product_ID  Quantity  Unit_Price  Transaction_Date                                                     
2010-08-21                     1         2.0       1.0        30.0   
2011-05-26                     2         4.0       1.0        40.0   
2012-08-26                     4         2.0       3.0        55.0   
2013-06-06                     5         4.0       1.0       124.0   
2010-08-21                     1         2.0       1.0        30.0   
2015-04-24                     9         4.0       3.0        60.0   
2016-05-08                    10         4.0       4.0         9.0   

                  Total_Price  
Transaction_Date               
2010-08-21               30.0  
2011-05-26               40.0  
2012-08-26              165.0  
2013-06-06              124.0  
2010-08-21               30.0  
2015-04-24             1800.0  
2016-05-08               36.0  

以交易日期为索引。

 

按索引排序: xx.sort_index()

transactions.sort_index(ascending=False, inplace=True)
                  Transaction_ID  Product_ID  Quantity  Unit_Price  Transaction_Date                                                     
2016-05-08                    10         4.0       4.0         9.0   
2015-04-24                     9         4.0       3.0        60.0   
2013-06-06                     5         4.0       1.0       124.0   
2012-08-26                     4         2.0       3.0        55.0   
2011-05-26                     2         4.0       1.0        40.0   
2010-08-21                     1         2.0       1.0        30.0   
2010-08-21                     1         2.0       1.0        30.0   

                  Total_Price  
Transaction_Date               
2016-05-08               36.0  
2015-04-24             1800.0  
2013-06-06              124.0  
2012-08-26              165.0  
2011-05-26               40.0  
2010-08-21               30.0  
2010-08-21               30.0  

以交易日期为索引,倒序排列。

 

按内容排序: xx.sort_values()

transactions.sort_values(by=[Quantity,Total_Price], inplace=True)
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
5               1       2010-08-21         2.0       1.0        30.0   
1               2       2011-05-26         4.0       1.0        40.0   
4               5       2013-06-06         4.0       1.0       124.0   
3               4       2012-08-26         2.0       3.0        55.0   
8               9       2015-04-24         4.0       3.0        60.0   
9              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  
0         30.0  
5         30.0  
1         40.0  
4        124.0  
3        165.0  
8       1800.0  
9         36.0  


更新索引: xx.reset_index()

transactions.reset_index(inplace=True)
   index  Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0      0               1       2010-08-21         2.0       1.0        30.0   
1      5               1       2010-08-21         2.0       1.0        30.0   
2      1               2       2011-05-26         4.0       1.0        40.0   
3      4               5       2013-06-06         4.0       1.0       124.0   
4      3               4       2012-08-26         2.0       3.0        55.0   
5      8               9       2015-04-24         4.0       3.0        60.0   
6      9              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  
0         30.0  
1         30.0  
2         40.0  
3        124.0  
4        165.0  
5       1800.0  
6         36.0  

上面按内容排序后,索引顺序变乱了,如果数据就需要按此顺序排列,那么可以更新索引。

 

透视表: pd.pivot_table(xx, values=..., index=..., columns=..., aggfunc=...)

print(pd.pivot_table(transactions,values=Total_Price,index=[Product_ID,Quantity],aggfunc=sum))
                     Total_Price
Product_ID Quantity             
2.0        1.0              60.0
           3.0             165.0
4.0        1.0             164.0
           3.0            1800.0
           4.0              36.0

 

多级索引行列转换: stack() ;   unstack()

print(pd.pivot_table(transactions,values=Total_Price,index=[Product_ID,Quantity],aggfunc=sum).unstack())
           Total_Price              
Quantity           1.0     3.0   4.0
Product_ID                          
2.0               60.0   165.0   NaN
4.0              164.0  1800.0  36.0

将上面的透视表展开。

 

数据分列: xx.str.split()

假如我们要把交易日期里的年份提取出来,变成单独的列。---> 先把交易日期这一列的数据格式变为str,再按照‘-‘进行切割,当参数expand为True时,会把切割出来的内容分别当做一列。因此,如果只需要年份,那么就只需要提取第一列。

year=transactions[Transaction_Date].astype(str).str.split(-,expand=True)[0]
transactions[Year]=year
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               2       2011-05-26         4.0       1.0        40.0   
3               4       2012-08-26         2.0       3.0        55.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               1       2010-08-21         2.0       1.0        30.0   
8               9       2015-04-24         4.0       3.0        60.0   
9              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  Year  
0         30.0  2010  
1         40.0  2011  
3        165.0  2012  
4        124.0  2013  
5         30.0  2010  
8       1800.0  2015  
9         36.0  2016 

这样,以后可以方便按年份或月份进行分组。

 

数据分区: pd.cut(xx, bins, labels=...) ;      xx.qcut(xx, bins, labels=...)        注:cut 是根据每个值的大小来进行分区的,qcut 是根据每个值出现的次数来进行分区的。

cut=pd.cut(transactions[Unit_Price],3,labels=[low,median,high])
transactions.insert(5,Price_Range,cut)
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               2       2011-05-26         4.0       1.0        40.0   
3               4       2012-08-26         2.0       3.0        55.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               1       2010-08-21         2.0       1.0        30.0   
8               9       2015-04-24         4.0       3.0        60.0   
9              10       2016-05-08         4.0       4.0         9.0   

  Price_Range  Total_Price  
0         low         30.0  
1         low         40.0  
3      median        165.0  
4        high        124.0  
5         low         30.0  
8      median       1800.0  
9         low         36.0 

在这里把Unit_Price分成了3挡。

 

合并: 

把列作为键进行合并: pd.merge(xx, xx, on=..., how=...)

假设我们现在有另外一张表,记载的是产品序号对应的产品名称。现在把这两张表合并在一起:

product_name=pd.DataFrame({"Product_ID":[1.0,2.0,3.0,4.0],"Product_Name":["candy","pen","stapler","toy"]})
merged=pd.merge(transactions,product_name,on=Product_ID,how="inner")
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               4       2012-08-26         2.0       3.0        55.0   
2               1       2010-08-21         2.0       1.0        30.0   
3               2       2011-05-26         4.0       1.0        40.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               9       2015-04-24         4.0       3.0        60.0   
6              10       2016-05-08         4.0       4.0         9.0   

   Total_Price Product_Name  
0         30.0          pen  
1        165.0          pen  
2         30.0          pen  
3         40.0          toy  
4        124.0          toy  
5       1800.0          toy  
6         36.0          toy  

 

假如两张表作为键的列名称不一致,那么可以通过设置left_on和left_on来解决:

product_name=pd.DataFrame({"Product_Identity":[1.0,2.0,3.0,4.0],"Product_Name":["candy","pen","stapler","toy"]})
merged=pd.merge(transactions,product_name,left_on=Product_ID,right_on="Product_Identity",how="inner")
   Transaction_ID Transaction_Date  Product_ID  Quantity  Unit_Price  0               1       2010-08-21         2.0       1.0        30.0   
1               4       2012-08-26         2.0       3.0        55.0   
2               1       2010-08-21         2.0       1.0        30.0   
3               2       2011-05-26         4.0       1.0        40.0   
4               5       2013-06-06         4.0       1.0       124.0   
5               9       2015-04-24         4.0       3.0        60.0   
6              10       2016-05-08         4.0       4.0         9.0   

   Total_Price  Product_Identity Product_Name  
0         30.0               2.0          pen  
1        165.0               2.0          pen  
2         30.0               2.0          pen  
3         40.0               4.0          toy  
4        124.0               4.0          toy  
5       1800.0               4.0          toy  
6         36.0               4.0          toy 

注:how可选"left", "right", "outer", "inner"

       "left":类似于SQL的left outer join;

       "right":类似于SQL的right outer join;

       "outer":并集,类似于SQL的full outer join;

       "inner":交集,类似于SQL的inner join;

 

按索引进行合并: xx.join(xx, on=..., how=...)

假设有另外几张表(t1, t2)记载有交易记录,如果需要把这几张表合并在一起:transactions.join([t1,t2], how="outer")。这里不再做演示。

 


以上是关于数据分析---用pandas进行数据清洗(Data Analysis Pandas Data Munging/Wrangling)的主要内容,如果未能解决你的问题,请参考以下文章

pandas 常用清洗数据

Pandas 二手房数据清洗可视化实战练习(带源码资源)

Pandas 数据清洗常见方法

转载使用pandas进行数据清洗

2.pandas数据清洗

#yyds干货盘点#Pandas数据清洗实用指南