基于Shader实现的UGUI描边解决方案

Posted guyaweiren

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于Shader实现的UGUI描边解决方案相关的知识,希望对你有一定的参考价值。

基于Shader实现的UGUI描边解决方案

前言

大扎好,我系狗猥。当大家都以为我鸽了的时候,我又出现了,这也是一种鸽。创业两年失败后归来,今天想给大家分享一个我最近研究出来的好康的,比游戏还刺激,还可以教你登dua郎喔(大误

这次给大家带来的是基于Shader实现的UGUI描边,也支持对Text组件使用。

首先请大家看看最终效果(上面放了一个Image和一个Text):
技术分享图片

(8102年了怎么还在舰

接下来,我会向大家介绍思路和具体实现过程。如果你想直接代到项目里使用,请自行跳转到本文最后,那里有完整的C#和Shader代码。

本方案在Unity 5.6.3f1下测试通过。

本文参考了http://blog.sina.com.cn/s/blog_6ad33d350102xb7v.html

转载请注明出处:https://www.cnblogs.com/GuyaWeiren/p/9665106.html


为什么要这么做

就我参加工作这些年接触到的UI美术来看,他们都挺喜欢用描边效果。诚然这个效果可以让文字更加突出,看着也挺不错。对美术来说做描边简单的一比,PS里加个图层样式就搞定,但是对我们程序来说就是一件很痛苦的事。

UGUI自带的Outline组件用过的同学都知道,本质上是把元素复制四份,然后做一些偏移绘制出来。但是把偏移量放大,瞬间就穿帮了。如果美术要求做一个稍微宽一点的描边,这个组件是无法实现的。
技术分享图片

然后有先辈提出按照Outline实现方式,增加复制份数的方法。请参考https://github.com/n-yoda/unity-vertex-effects。确实非常漂亮。但是这个做法有一个非常严重的问题:数量如此大的顶点数,对性能会有影响。我们知道每个字符是由两个三角形构成,总共6个顶点。如果文字数量大,再加上一个复制N份的脚本,顶点数会分分钟炸掉。

以复制8次为例,一段200字的文本在进行处理后会生成200 * 6 * (8+1) = 10800 个顶点,多么可怕。并且,Unity5.2以前的版本要求,每一个Canvas下至多只能有65535个顶点,超过就会报错。

TextMeshPro能做很多漂亮的效果。但是它的做法类似于图字,要提供所有会出现的字符。对于字符很少的英语环境,这没有问题,但对于中文环境,把所有字符弄进去是不现实的。还有最关键的是,它是作用于TextMesh组件,而不是UGUI的Text

于是乎,使用Shader变成了最优解。

概括讲,这个实现就是在C#代码中对UI顶点根据描边宽度进行外扩,然后在Shader的像素着色器中对像素的一周以描边宽度为半径采N个样,最后将颜色叠加起来。通常需要描边的元素尺寸都不大,故多重采样带来的性能影响几乎是可以忽略的。


在Shader中实现描边

创建一个OutlineEx.shader。对于描边,我们需要两个参数:描边的颜色和描边的参数。所以首先将这两个参数添加到Shader的属性中:

_OutlineColor("Outline Color", Color) = (1, 1, 1, 1)
_OutlineWidth("Outline Width", Int) = 1

采样坐标用圆的参数方程计算。在Shader中进行三角函数运算比较吃性能,并且这里采样的角度是固定的,所以我们可以把坐标直接写死。在Shader中添加采样的函数。因为最终进行颜色混合的时候只需要用到alpha值,所以函数不返回rgb:

fixed SampleAlpha(int pIndex, v2f IN)
{
    const fixed sinArray[12] = { 0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5 };
    const fixed cosArray[12] = { 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, 0.5, 0.866 };
    float2 pos = IN.texcoord + _MainTex_TexelSize.xy * float2(cosArray[pIndex], sinArray[pIndex]) * _OutlineWidth;
    return (tex2D(_MainTex, pos) + _TextureSampleAdd).w * _OutlineColor.w;
}

然后在像素着色器中增加对方法的调用。

fixed4 frag(v2f IN) : SV_Target
{
    fixed4 color = (tex2D(_MainTex, IN.texcoord) + _TextureSampleAdd) * IN.color;

    half4 val = half4(_OutlineColor.x, _OutlineColor.y, _OutlineColor.z, 0);
    // 注意:这里为了简化代码用了循环
    // 尽量不要在Shader中使用循环,多复制几次代码都行
    for (int i = 0; i < 12; i++)
    {
        val.w += SampleAlpha(i, IN);
    }
    color = (val * (1.0 - color.a)) + (color * color.a);

    return color;
}

接下来,在Unity中新建一个材质球,把Shader赋上去,挂在一个UGUI组件上,然后调整描边颜色和宽度,可以看到效果:
技术分享图片

可以看到描边已经出现了,但是超出图片范围的部分被裁减掉了。所以接下来,我们需要对图片的区域进行调整,保证描边的部分也被包含在区域内。


在C#层进行区域扩展

要扩展区域,就得修改顶点。Unity提供了BaseMeshEffect类供开发者对UI组件的顶点进行修改。

创建一个OutlineEx类,继承于BaseMeshEffect类,实现其中的ModifyMesh(VertexHelper)方法。参数VertexHelper类提供了GetUIVertexStream(List<UIVertex>)AddUIVertexTriangleStream(List<UIVertex>)方法用于获取和设置UI物件的顶点。

这里我们可以把参数需要的List提出来做成静态变量,这样能够避免每次ModifyMesh调用时创建List对象。

public class OutlineEx : BaseMeshEffect
{
    public Color OutlineColor = Color.white;
    [Range(0, 6)]
    public int OutlineWidth = 0;

    private static List<UIVertex> m_VetexList = new List<UIVertex>();


    protected override void Awake()
    {
        base.Awake();

        var shader = Shader.Find("TSF Shaders/UI/OutlineEx");
        base.graphic.material = new Material(shader);

        var v1 = base.graphic.canvas.additionalShaderChannels;
        var v2 = AdditionalCanvasShaderChannels.Tangent;
        if ((v1 & v2) != v2)
        {
            base.graphic.canvas.additionalShaderChannels |= v2;
        }
        this._Refresh();
    }


#if UNITY_EDITOR
    protected override void OnValidate()
    {
        base.OnValidate();

        if (base.graphic.material != null)
        {
            this._Refresh();
        }
    }
#endif


    private void _Refresh()
    {
        base.graphic.material.SetColor("_OutlineColor", this.OutlineColor);
        base.graphic.material.SetInt("_OutlineWidth", this.OutlineWidth);
        base.graphic.SetVerticesDirty();
    }


    public override void ModifyMesh(VertexHelper vh)
    {
        vh.GetUIVertexStream(m_VetexList);

        this._ProcessVertices();

        vh.Clear();
        vh.AddUIVertexTriangleStream(m_VetexList);
    }


    private void _ProcessVertices()
    {
        // TODO: 处理顶点
    }
}

现在已经可以获取到所有的顶点信息了。接下来我们对它进行外扩。

我们知道每三个顶点构成一个三角形,所以需要对构成三角形的三个顶点进行处理,并且要将它的UV坐标(决定图片在图集中的范围)也做对应的外扩,否则从视觉上看起来就只是图片被放大了一点点。

于是完成_ProcessVertices方法:

private void _ProcessVertices()
{
    for (int i = 0, count = m_VetexList.Count - 3; i <= count; i += 3)
    {
        var v1 = m_VetexList[i];
        var v2 = m_VetexList[i + 1];
        var v3 = m_VetexList[i + 2];
        // 计算原顶点坐标中心点
        //
        var minX = _Min(v1.position.x, v2.position.x, v3.position.x);
        var minY = _Min(v1.position.y, v2.position.y, v3.position.y);
        var maxX = _Max(v1.position.x, v2.position.x, v3.position.x);
        var maxY = _Max(v1.position.y, v2.position.y, v3.position.y);
        var posCenter = new Vector2(minX + maxX, minY + maxY) * 0.5f;
        // 计算原始顶点坐标和UV的方向
        //
        Vector2 triX, triY, uvX, uvY;
        Vector2 pos1 = v1.position;
        Vector2 pos2 = v2.position;
        Vector2 pos3 = v3.position;
        if (Mathf.Abs(Vector2.Dot((pos2 - pos1).normalized, Vector2.right))
            > Mathf.Abs(Vector2.Dot((pos3 - pos2).normalized, Vector2.right)))
        {
            triX = pos2 - pos1;
            triY = pos3 - pos2;
            uvX = v2.uv0 - v1.uv0;
            uvY = v3.uv0 - v2.uv0;
        }
        else
        {
            triX = pos3 - pos2;
            triY = pos2 - pos1;
            uvX = v3.uv0 - v2.uv0;
            uvY = v2.uv0 - v1.uv0;
        }
        // 为每个顶点设置新的Position和UV
        //
        v1 = _SetNewPosAndUV(v1, this.OutlineWidth, posCenter, triX, triY, uvX, uvY);
        v2 = _SetNewPosAndUV(v2, this.OutlineWidth, posCenter, triX, triY, uvX, uvY);
        v3 = _SetNewPosAndUV(v3, this.OutlineWidth, posCenter, triX, triY, uvX, uvY);
        // 应用设置后的UIVertex
        //
        m_VetexList[i] = v1;
        m_VetexList[i + 1] = v2;
        m_VetexList[i + 2] = v3;
    }
}


private static UIVertex _SetNewPosAndUV(UIVertex pVertex, int pOutLineWidth,
    Vector2 pPosCenter,
    Vector2 pTriangleX, Vector2 pTriangleY,
    Vector2 pUVX, Vector2 pUVY)
{
    // Position
    var pos = pVertex.position;
    var posXOffset = pos.x > pPosCenter.x ? pOutLineWidth : -pOutLineWidth;
    var posYOffset = pos.y > pPosCenter.y ? pOutLineWidth : -pOutLineWidth;
    pos.x += posXOffset;
    pos.y += posYOffset;
    pVertex.position = pos;
    // UV
    var uv = pVertex.uv0;
    uv += pUVX / pTriangleX.magnitude * posXOffset * (Vector2.Dot(pTriangleX, Vector2.right) > 0 ? 1 : -1);
    uv += pUVY / pTriangleY.magnitude * posYOffset * (Vector2.Dot(pTriangleY, Vector2.up) > 0 ? 1 : -1);
    pVertex.uv0 = uv;

    return pVertex;
}


private static float _Min(float pA, float pB, float pC)
{
    return Mathf.Min(Mathf.Min(pA, pB), pC);
}


private static float _Max(float pA, float pB, float pC)
{
    return Mathf.Max(Mathf.Max(pA, pB), pC);
}

然后可以在编辑器中调整描边颜色和宽度,可以看到效果:
技术分享图片

OJ8K,现在范围已经被扩大,可以看到上下左右四个边的描边宽度没有被裁掉了。


UV裁剪,排除不需要的像素

在上一步的效果图中,我们可以注意到图片的边界出现了被拉伸的部分。如果使用了图集或字体,在UV扩大后图片附近的像素也会被包含进来。为什么会变成这样呢?(先打死)

因为前面说过,UV裁剪框就相当于图集中每个小图的范围。直接扩大必然会包含到小图邻接的图的像素。所以这一步我们需要对最终绘制出的图进行裁剪,保证这些不要的像素不被画出来。

裁剪的逻辑也很简单。如果该像素处于被扩大前的UV范围外,则设置它的alpha为0。这一步需要放在像素着色器中完成。如何将原始UV区域传进Shader是一个问题。对于Text组件,所有字符的顶点都会进入Shader处理,所以在Shader中添加属性是不现实的。

好在Unity为我们提供了门路,可以看UIVertex结构体的成员:

public struct UIVertex
{
    public static UIVertex simpleVert;
    public Vector3 position;
    public Vector3 normal;
    public Color32 color;
    public Vector2 uv0;
    public Vector2 uv1;
    public Vector2 uv2;
    public Vector2 uv3;
    public Vector4 tangent;
}

而Unity默认只会使用到positionnormaluv0color,其他成员是不会使用的。所以我们可以考虑将原始UV框的数据(最小x,最小y,最大x,最大y)赋值给tangent成员,因为它刚好是一个Vector4类型。

当然,你想把数据分别放在uv1uv2中也是可以的。

需要注意的是,在Unity5.4(大概是这个版本吧,记不清了)之后,UIVertex的非必须成员的数据默认不会被传递进Shader。所以我们需要修改UI组件的CanvasadditionalShaderChannels属性,让tangent成员也传入Shader。

var v1 = base.graphic.canvas.additionalShaderChannels;
var v2 = AdditionalCanvasShaderChannels.Tangent;
if ((v1 & v2) != v2)
{
    base.graphic.canvas.additionalShaderChannels |= v2;
}

将原始UV框赋值给tangent成员

var uvMin = _Min(v1.uv0, v2.uv0, v3.uv0);
var uvMax = _Max(v1.uv0, v2.uv0, v3.uv0);
vertex.tangent = new Vector4(uvMin.x, uvMin.y, uvMax.x, uvMax.y);

private static Vector2 _Min(Vector2 pA, Vector2 pB, Vector2 pC)
{
    return new Vector2(_Min(pA.x, pB.x, pC.x), _Min(pA.y, pB.y, pC.y));
}


private static Vector2 _Max(Vector2 pA, Vector2 pB, Vector2 pC)
{
    return new Vector2(_Max(pA.x, pB.x, pC.x), _Max(pA.y, pB.y, pC.y));
}

然后在Shader的顶点着色器中获取它:

struct appdata
{
    // 省略
    float4 tangent : TANGENT;
};

v2f vert(appdata IN)
{
    // 省略
    o.tangent = IN.tangent;
    // 省略
}

判定一个点是否在给定矩形框内,可以用到内置的step函数。它常用于作比较,替代if/else语句提高效率。它的逻辑是:顺序给定两个参数a和b,如果 a > b 返回0,否则返回1。

添加判定函数:

fixed IsInRect(float2 pPos, float4 pClipRect)
{
    pPos = step(pClipRect.xy, pPos) * step(pPos, pClipRect.zw);
    return pPos.x * pPos.y;
}

然后在采样和像素着色器中添加对它的调用:

fixed SampleAlpha(int pIndex, v2f IN)
{
    // 省略
    return IsInRect(pos, IN.tangent) * (tex2D(_MainTex, pos) + _TextureSampleAdd).w * _OutlineColor.w;
}

fixed4 frag(v2f IN) : SV_Target
{
    // 省略
    if (_OutlineWidth > 0) 
    {
        color.w *= IsInRect(IN.texcoord, IN.tangent);
        // 省略
    }
}

最终代码

那么现在就可以得到最终效果了。在我的代码中,对每个像素做了12次采样。如果美术要求对大图片进行比较粗的描边,需要增加采样次数。当然,如果字本身小,也可以降低次数。

由于这个Shader是给UI用的,所以需要将UI-Default.shader中的一些属性和设置复制到我们的Shader中。

//————————————————————————————————————————————
//  OutlineEx.cs
//
//  Created by Chiyu Ren on 2018/9/12 23:03:51
//————————————————————————————————————————————
using UnityEngine;
using UnityEngine.UI;
using System.Collections.Generic;


namespace TooSimpleFramework.UI
{
    /// <summary>
    /// UGUI描边
    /// </summary>
    public class OutlineEx : BaseMeshEffect
    {
        public Color OutlineColor = Color.white;
        [Range(0, 6)]
        public int OutlineWidth = 0;

        private static List<UIVertex> m_VetexList = new List<UIVertex>();


        protected override void Awake()
        {
            base.Awake();

            var shader = Shader.Find("TSF Shaders/UI/OutlineEx");
            base.graphic.material = new Material(shader);

            var v1 = base.graphic.canvas.additionalShaderChannels;
            var v2 = AdditionalCanvasShaderChannels.Tangent;
            if ((v1 & v2) != v2)
            {
                base.graphic.canvas.additionalShaderChannels |= v2;
            }
            this._Refresh();
        }


#if UNITY_EDITOR
        protected override void OnValidate()
        {
            base.OnValidate();

            if (base.graphic.material != null)
            {
                this._Refresh();
            }
        }
#endif


        private void _Refresh()
        {
            base.graphic.material.SetColor("_OutlineColor", this.OutlineColor);
            base.graphic.material.SetInt("_OutlineWidth", this.OutlineWidth);
            base.graphic.SetVerticesDirty();
        }


        public override void ModifyMesh(VertexHelper vh)
        {
            vh.GetUIVertexStream(m_VetexList);

            this._ProcessVertices();

            vh.Clear();
            vh.AddUIVertexTriangleStream(m_VetexList);
        }


        private void _ProcessVertices()
        {
            for (int i = 0, count = m_VetexList.Count - 3; i <= count; i += 3)
            {
                var v1 = m_VetexList[i];
                var v2 = m_VetexList[i + 1];
                var v3 = m_VetexList[i + 2];
                // 计算原顶点坐标中心点
                //
                var minX = _Min(v1.position.x, v2.position.x, v3.position.x);
                var minY = _Min(v1.position.y, v2.position.y, v3.position.y);
                var maxX = _Max(v1.position.x, v2.position.x, v3.position.x);
                var maxY = _Max(v1.position.y, v2.position.y, v3.position.y);
                var posCenter = new Vector2(minX + maxX, minY + maxY) * 0.5f;
                // 计算原始顶点坐标和UV的方向
                //
                Vector2 triX, triY, uvX, uvY;
                Vector2 pos1 = v1.position;
                Vector2 pos2 = v2.position;
                Vector2 pos3 = v3.position;
                if (Mathf.Abs(Vector2.Dot((pos2 - pos1).normalized, Vector2.right))
                    > Mathf.Abs(Vector2.Dot((pos3 - pos2).normalized, Vector2.right)))
                {
                    triX = pos2 - pos1;
                    triY = pos3 - pos2;
                    uvX = v2.uv0 - v1.uv0;
                    uvY = v3.uv0 - v2.uv0;
                }
                else
                {
                    triX = pos3 - pos2;
                    triY = pos2 - pos1;
                    uvX = v3.uv0 - v2.uv0;
                    uvY = v2.uv0 - v1.uv0;
                }
                // 计算原始UV框
                //
                var uvMin = _Min(v1.uv0, v2.uv0, v3.uv0);
                var uvMax = _Max(v1.uv0, v2.uv0, v3.uv0);
                var uvOrigin = new Vector4(uvMin.x, uvMin.y, uvMax.x, uvMax.y);
                // 为每个顶点设置新的Position和UV,并传入原始UV框
                //
                v1 = _SetNewPosAndUV(v1, this.OutlineWidth, posCenter, triX, triY, uvX, uvY, uvOrigin);
                v2 = _SetNewPosAndUV(v2, this.OutlineWidth, posCenter, triX, triY, uvX, uvY, uvOrigin);
                v3 = _SetNewPosAndUV(v3, this.OutlineWidth, posCenter, triX, triY, uvX, uvY, uvOrigin);
                // 应用设置后的UIVertex
                //
                m_VetexList[i] = v1;
                m_VetexList[i + 1] = v2;
                m_VetexList[i + 2] = v3;
            }
        }


        private static UIVertex _SetNewPosAndUV(UIVertex pVertex, int pOutLineWidth,
            Vector2 pPosCenter,
            Vector2 pTriangleX, Vector2 pTriangleY,
            Vector2 pUVX, Vector2 pUVY,
            Vector4 pUVOrigin)
        {
            // Position
            var pos = pVertex.position;
            var posXOffset = pos.x > pPosCenter.x ? pOutLineWidth : -pOutLineWidth;
            var posYOffset = pos.y > pPosCenter.y ? pOutLineWidth : -pOutLineWidth;
            pos.x += posXOffset;
            pos.y += posYOffset;
            pVertex.position = pos;
            // UV
            var uv = pVertex.uv0;
            uv += pUVX / pTriangleX.magnitude * posXOffset * (Vector2.Dot(pTriangleX, Vector2.right) > 0 ? 1 : -1);
            uv += pUVY / pTriangleY.magnitude * posYOffset * (Vector2.Dot(pTriangleY, Vector2.up) > 0 ? 1 : -1);
            pVertex.uv0 = uv;
            // 原始UV框
            pVertex.tangent = pUVOrigin;

            return pVertex;
        }


        private static float _Min(float pA, float pB, float pC)
        {
            return Mathf.Min(Mathf.Min(pA, pB), pC);
        }


        private static float _Max(float pA, float pB, float pC)
        {
            return Mathf.Max(Mathf.Max(pA, pB), pC);
        }


        private static Vector2 _Min(Vector2 pA, Vector2 pB, Vector2 pC)
        {
            return new Vector2(_Min(pA.x, pB.x, pC.x), _Min(pA.y, pB.y, pC.y));
        }


        private static Vector2 _Max(Vector2 pA, Vector2 pB, Vector2 pC)
        {
            return new Vector2(_Max(pA.x, pB.x, pC.x), _Max(pA.y, pB.y, pC.y));
        }
    }
}

Shader

Shader "TSF Shaders/UI/OutlineEx" 
{
    Properties
    {
        _MainTex ("Main Texture", 2D) = "white" {}
        _Color ("Tint", Color) = (1, 1, 1, 1)
        _OutlineColor ("Outline Color", Color) = (1, 1, 1, 1)
        _OutlineWidth ("Outline Width", Int) = 1

        _StencilComp ("Stencil Comparison", Float) = 8
        _Stencil ("Stencil ID", Float) = 0
        _StencilOp ("Stencil Operation", Float) = 0
        _StencilWriteMask ("Stencil Write Mask", Float) = 255
        _StencilReadMask ("Stencil Read Mask", Float) = 255

        _ColorMask ("Color Mask", Float) = 15

        [Toggle(UNITY_UI_ALPHACLIP)] _UseUIAlphaClip ("Use Alpha Clip", Float) = 0
    }

    SubShader
    {
        Tags
        { 
            "Queue"="Transparent" 
            "IgnoreProjector"="True" 
            "RenderType"="Transparent" 
            "PreviewType"="Plane"
            "CanUseSpriteAtlas"="True"
        }
        
        Stencil
        {
            Ref [_Stencil]
            Comp [_StencilComp]
            Pass [_StencilOp] 
            ReadMask [_StencilReadMask]
            WriteMask [_StencilWriteMask]
        }

        Cull Off
        Lighting Off
        ZWrite Off
        ZTest [unity_GUIZTestMode]
        Blend SrcAlpha OneMinusSrcAlpha
        ColorMask [_ColorMask]

        Pass
        {
            Name "OUTLINE"

            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _TextureSampleAdd;
            float4 _MainTex_TexelSize;

            float4 _OutlineColor;
            int _OutlineWidth;

            struct appdata
            {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float2 texcoord : TEXCOORD0;
                fixed4 color : COLOR;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
                float4 tangent : TANGENT;
                float2 texcoord : TEXCOORD0;
                fixed4 color : COLOR;
            };

            v2f vert(appdata IN)
            {
                v2f o;

                o.vertex = UnityObjectToClipPos(IN.vertex);
                o.tangent = IN.tangent;
                o.texcoord = IN.texcoord;
                o.color = IN.color * _Color;

                return o;
            }

            fixed IsInRect(float2 pPos, float4 pClipRect)
            {
                pPos = step(pClipRect.xy, pPos) * step(pPos, pClipRect.zw);
                return pPos.x * pPos.y;
            }

            fixed SampleAlpha(int pIndex, v2f IN)
            {
                const fixed sinArray[12] = { 0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5 };
                const fixed cosArray[12] = { 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, 0.5, 0.866 };
                float2 pos = IN.texcoord + _MainTex_TexelSize.xy * float2(cosArray[pIndex], sinArray[pIndex]) * _OutlineWidth;
                return IsInRect(pos, IN.tangent) * (tex2D(_MainTex, pos) + _TextureSampleAdd).w * _OutlineColor.w;
            }

            fixed4 frag(v2f IN) : SV_Target
            {
                fixed4 color = (tex2D(_MainTex, IN.texcoord) + _TextureSampleAdd) * IN.color;
                if (_OutlineWidth > 0) 
                {
                    color.w *= IsInRect(IN.texcoord, IN.tangent);
                    half4 val = half4(_OutlineColor.x, _OutlineColor.y, _OutlineColor.z, 0);

                    val.w += SampleAlpha(0, IN);
                    val.w += SampleAlpha(1, IN);
                    val.w += SampleAlpha(2, IN);
                    val.w += SampleAlpha(3, IN);
                    val.w += SampleAlpha(4, IN);
                    val.w += SampleAlpha(5, IN);
                    val.w += SampleAlpha(6, IN);
                    val.w += SampleAlpha(7, IN);
                    val.w += SampleAlpha(8, IN);
                    val.w += SampleAlpha(9, IN);
                    val.w += SampleAlpha(10, IN);
                    val.w += SampleAlpha(11, IN);

                    color = (val * (1.0 - color.a)) + (color * color.a);
                }
                return color;
            }
            ENDCG
        }
    }
}

最终效果:
技术分享图片


优化点

可以看到在最后的像素着色器中使用了if语句。因为我比较菜,写出来的颜色混合算法在描边宽度为0的时候看起来效果很不好。

如果有大神能提供一个更优的算法,欢迎在评论中把我批判一番。把if语句去掉,可以提升一定的性能。

还有一点是,如果将图片或文字本身的透明度设为0,并不能得到镂空的效果。如果美术提出要这个效果,请毫不犹豫打死(误

最后一点,仔细观察上面最终效果的Ass,可以发现它们的字符本身被后一个字符的描边覆盖了一部分。理论上使用两个Pass可以解决,一个只绘制描边,另一个只绘制本身。至于实现就留给读者了(主要是我懒得去改代码)


后记

首先要感谢提供这个思路的原作者。不然我还真想不出可以这么做。看来我毕竟还是图样。

希望这篇博文能帮到需要的朋友,因为网上几乎没有这个的教程。之前在别人的博客看到一句话:人生就是水桶,前三十年大家给你灌水,后三十年你给大家灌水。感觉挺有意思。今后会继续分享一些自己搞出的、网上少有的东西(虽然我还没到30)。

最近倒是没有特别在做什么,不过有在学习Shader,进入了未知♂领域。买了一些书,想给大家推荐冯乐乐的《Unity Shader入门精要》(博客https://blog.csdn.net/candycat1992/),对入门挺有帮助。知道该书作者是比我小一岁但是比我牛逼太多的美女程序媛(不要YY了,有对象的)的时候我真的受到了极大刺激。一个妹子都能钻得这么深,我应该更加努力啊。学习是从摇篮到坟墓的过程,希望大家不管学什么都要坚持。

还有一点就是创业真的要谨慎。最近了解到国家出了条例要对国产游戏限量发行,对各个游戏公司想必都是一记闷锤。加之统一征收社保,引起的连锁反应必然会波及到游戏行业。唯一欣慰的是我们还能做游戏,还能在这条路上继续走。那么就继续走下去吧,不要停下来啊!(指加班)

很惭愧,就做了一点微小的工作,谢谢大家!






以上是关于基于Shader实现的UGUI描边解决方案的主要内容,如果未能解决你的问题,请参考以下文章

Unity Shader 卡通渲染 基于退化四边形的实时描边

描边shader(法线外拓)

Unity Shader实现描边效果

Unity3D Shader系列之描边

关于Unity中的模型描边与Shader切换(专题二)

Unity开发之UI与Lua知识汇总!