ML- Unsupervised Learning, K-means, Dimentionality Reduction

Posted mashuai-191

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ML- Unsupervised Learning, K-means, Dimentionality Reduction相关的知识,希望对你有一定的参考价值。

 

 Clustering

 K-means:
基本思想是先随机选择要分类数目的点,然后找出距离这些点最近的training data 着色,距离哪个点近就算哪种类型,再对每种分类算出平均值,把中心点移动到平均值处,重复着色算平均值,直到分类成功.
  技术分享图片

 

  技术分享图片
 
  技术分享图片
 
 
One way to choose K is elbow method
技术分享图片
 
 
 
Dimentionality Reduction: to save space of memory and speed up compute. 还有一个作用是可以用降维来visualize data.
 
技术分享图片
 
降维最常用的算法PCA (Principal Component Analysis)
技术分享图片
技术分享图片
 
 
the 1st step of PCA algo is data preprocessing
技术分享图片
 
 
PCA algo in matlab:
技术分享图片
 
How to de-compress back from 100-dimentional to 1000-dimentional
 
技术分享图片
How to choose the parameter K
技术分享图片
 
Advice for using PCA. PCA is often used for data compresion and visualization. it is bad to use it to prevent overfitting.

以上是关于ML- Unsupervised Learning, K-means, Dimentionality Reduction的主要内容,如果未能解决你的问题,请参考以下文章

Unsupervised Deep Learning – ICLR 2017 Discoveries

CVICML2015_Unsupervised Learning of Video Representations using LSTMs

CVICCV2015_Unsupervised Learning of Visual Representations using Videos

Machine Learning——Unsupervised Learning(机器学习之非监督学习)

如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

paper 124:转载无监督特征学习——Unsupervised feature learning and deep learning