POJ1050 To the Max - 贪心[最大子矩阵和]

Posted loi-brilliant

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ1050 To the Max - 贪心[最大子矩阵和]相关的知识,希望对你有一定的参考价值。

POJ1050 To the Max

传送门

题意:

给定一个(n*n)的带权矩阵,求一个矩阵,使矩阵内权值之和最大,输出这个矩阵的权值和。$nleq100 $

思路:

可以利用前缀和优化,然后(O(n^4))枚举矩阵的左上角和右下角,求出最大二维前缀和。
这样的枚举方案比较难以再次优化,我们考虑矩阵权值和的实质:等价于我们将矩阵每列的权值加起来,形成一个新数列,然后对这个数列求和,而最大的矩阵权值和,相当于在矩阵上下边界不变的情况下使新数列的和最大,即新数列的最大子段和。所以换种枚举方案:我们枚举矩阵的上下边界,将每列被夹在中间的权值加起来,形成一个长度为(n)的新数列,然后在这个数列上求最大子段和,最终答案是这(O(n^2))个最大子段和的(max)

AC Code:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=500+100;
typedef long long ll;
int a[N][N];
ll sum[N][N];
ll num[N];
int main(){
    int n;
    while(~scanf("%d",&n)){
        memset(sum,0,sizeof(sum));
        memset(num,0,sizeof(num));
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++){
                scanf("%d",&a[i][j]);
                sum[i][j]=sum[i-1][j]+a[i][j];
            }
        long long ans=-(1<<30);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                for(int k=1;k<=n;k++) num[k]=sum[i][k]-sum[j-1][k];
                long long res=-(1<<30),cnt=0;
                for(int k=1;k<=n;k++){
                    cnt+=num[k];
                    res=max(res,cnt);
                    if(cnt<0) cnt=0;
                }
                ans=max(ans,res);
            }
        }
        printf("%lld
",ans);
    }
    return 0;
}
/*
4
0 -2 -7 0 
9  2 -6 2
-4 1 -4 1
-1 8  0 -2

15
*/

以上是关于POJ1050 To the Max - 贪心[最大子矩阵和]的主要内容,如果未能解决你的问题,请参考以下文章

POJ-1050 To the Max

POJ 1050 To the Max (动规)

[poj]1050 To the Max dp

POJ-1050To The Max(动态规划)

POJ1050 To the Max

$Poj1050 To the Max$