TOJ 4475The Coolest Sub-matrix(对角线前缀和)

Posted kannyi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TOJ 4475The Coolest Sub-matrix(对角线前缀和)相关的知识,希望对你有一定的参考价值。

描述

Given an N*N matrix, find the coolest square sub-matrix.
We define the cool value of the square matrix as X-Y where X indicating the sum of all integers of the main diagonal and Y indicating the sum of the other diagonal.

输入

The first line has a positive integer N (2 ≤ N ≤ 400), the size of the matrix.
The following N lines each contain N integers in the range [-1000, 1000], the elements of the matrix.

输出

Output the coolest value of a square sub-matrix.

样例输入

2
1 -2
4 5

样例输出

4

题意:

在n*n的矩阵中找到一个子矩阵,使得其 (正对角线整数之和-反对角线整数之和) 最大

思路:

记录矩阵中各对角线的前缀和,将所取对角线两端的前缀和相减,所得即为该对角线整数之和。

#include<bits/stdc++.h>
#define MAX 405
using namespace std;
int A1[MAX][MAX],A2[MAX][MAX];//A1正对角线前缀和 与 A2反对角线前缀和 
int main()
{
    int i,j,k,n,x,maxx=-1;
    cin>>n;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            scanf("%d",&x);
            A1[i][j]=A1[i-1][j-1]+x;//左上加到右下 
            A2[i][j]=A2[i-1][j+1]+x;//右上加到左下 
        }
    }
    for(i=1;i<=n;i++)    //起始行位置i 
        for(j=1;j<=n;j++)//起始列位置j 
            for(k=1;k<=min(n+1-i,n+1-j);k++)//小矩阵边长k 
                maxx=max(maxx,A1[i+k][j+k]-A1[i-1][j-1]-(A2[i+k][j]-A2[i-1][j+k+1]));
    cout<<maxx<<endl;
    return 0;
} 

 

以上是关于TOJ 4475The Coolest Sub-matrix(对角线前缀和)的主要内容,如果未能解决你的问题,请参考以下文章

TOJ-1321 The Brick Stops Here

TOJ 3812Find the Lost Sock

TOJ-1317 Median Weight Bead

TOJ 2176Surprising Strings

TOJ 1545Hurdles of 110m(背包题)

toj 2282: Median Weight Bead (队列+vector)