InfoGAN的简易实现

Posted hxjbc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了InfoGAN的简易实现相关的知识,希望对你有一定的参考价值。

这里求最大化互信息没有共享D网络,直接使用了一个简单的mlp神经网络Q

import os, sys
sys.path.append("/home/hxj/anaconda3/lib/python3.6/site-packages")
import torch
import torch.nn.functional as nn
import torch.autograd as autograd
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from torch.autograd import Variable
from tensorflow.examples.tutorials.mnist import input_data


mnist = input_data.read_data_sets(./MNIST_data, one_hot=True)
mb_size = 32
Z_dim = 16
X_dim = mnist.train.images.shape[1] #784
y_dim = mnist.train.labels.shape[1] #10
h_dim = 128
cnt = 0
lr = 1e-3


def xavier_init(size):
    in_dim = size[0]
    xavier_stddev = 1. / np.sqrt(in_dim / 2.)
    return Variable(torch.randn(*size) * xavier_stddev, requires_grad=True)


""" ==================== GENERATOR ======================== """

Wzh = xavier_init(size=[Z_dim + 10, h_dim]) #shape 26 * 128
bzh = Variable(torch.zeros(h_dim), requires_grad=True)

Whx = xavier_init(size=[h_dim, X_dim]) #shape 128 * 784
bhx = Variable(torch.zeros(X_dim), requires_grad=True)


def G(z, c):
    inputs = torch.cat([z, c], 1)
    h = nn.relu(inputs @ Wzh + bzh.repeat(inputs.size(0), 1))
    X = nn.sigmoid(h @ Whx + bhx.repeat(h.size(0), 1))
    return X


""" ==================== DISCRIMINATOR ======================== """

Wxh = xavier_init(size=[X_dim, h_dim])
bxh = Variable(torch.zeros(h_dim), requires_grad=True)

Why = xavier_init(size=[h_dim, 1])
bhy = Variable(torch.zeros(1), requires_grad=True)


def D(X):
    h = nn.relu(X @ Wxh + bxh.repeat(X.size(0), 1))
    y = nn.sigmoid(h @ Why + bhy.repeat(h.size(0), 1))
    return y


""" ====================== Q(c|X) ========================== """

Wqxh = xavier_init(size=[X_dim, h_dim])
bqxh = Variable(torch.zeros(h_dim), requires_grad=True)

Whc = xavier_init(size=[h_dim, 10])
bhc = Variable(torch.zeros(10), requires_grad=True)


def Q(X):
    h = nn.relu(X @ Wqxh + bqxh.repeat(X.size(0), 1))
    c = nn.softmax(h @ Whc + bhc.repeat(h.size(0), 1))
    return c


G_params = [Wzh, bzh, Whx, bhx]
D_params = [Wxh, bxh, Why, bhy]
Q_params = [Wqxh, bqxh, Whc, bhc]
params = G_params + D_params + Q_params


""" ===================== TRAINING ======================== """


def reset_grad():
    for p in params:
        if p.grad is not None:
            data = p.grad.data
            p.grad = Variable(data.new().resize_as_(data).zero_())


G_solver = optim.Adam(G_params, lr=1e-3)
D_solver = optim.Adam(D_params, lr=1e-3)
Q_solver = optim.Adam(G_params + Q_params, lr=1e-3)


def sample_c(size):
    c = np.random.multinomial(1, 10*[0.1], size=size)
    c = Variable(torch.from_numpy(c.astype(float32)))
    return c


for it in range(100000):
    # Sample data
    X, _ = mnist.train.next_batch(mb_size) # 32
    X = Variable(torch.from_numpy(X)) #将数组转换为列向量 32*784
    z = Variable(torch.randn(mb_size, Z_dim))# 32 16 随机二维数组
    c = sample_c(mb_size) # 32 10的标签 随机标签
    print(z.shape)
    print(c.shape)
    sys.exit()

    # Dicriminator forward-loss-backward-update
    G_sample = G(z, c)
    D_real = D(X)
    D_fake = D(G_sample)

    D_loss = -torch.mean(torch.log(D_real + 1e-8) + torch.log(1 - D_fake + 1e-8))

    D_loss.backward()
    D_solver.step()

    # Housekeeping - reset gradient
    reset_grad()

    # Generator forward-loss-backward-update
    G_sample = G(z, c)
    D_fake = D(G_sample)

    G_loss = -torch.mean(torch.log(D_fake + 1e-8))

    G_loss.backward()
    G_solver.step()

    # Housekeeping - reset gradient
    reset_grad()

    # Q forward-loss-backward-update
    G_sample = G(z, c) #在c标签下生成的假样本,除了用来训练G和D之外,还要经过神经网络Q
    Q_c_given_x = Q(G_sample) # 让标签和经过Q生成的值之间的互信息最大

    crossent_loss = torch.mean(-torch.sum(c * torch.log(Q_c_given_x + 1e-8), dim=1))
    mi_loss = crossent_loss

    mi_loss.backward()
    Q_solver.step()

    # Housekeeping - reset gradient
    reset_grad()

    # Print and plot every now and then
    if it % 1000 == 0:
        idx = np.random.randint(0, 10)
        c = np.zeros([mb_size, 10])
        c[range(mb_size), idx] = 1
        c = Variable(torch.from_numpy(c.astype(float32)))
        samples = G(z, c).data.numpy()[:16]

        print(Iter-{}; D_loss: {}; G_loss: {}; Idx: {}
              .format(it, D_loss.data.numpy(), G_loss.data.numpy(), idx))

        fig = plt.figure(figsize=(4, 4))
        gs = gridspec.GridSpec(4, 4)
        gs.update(wspace=0.05, hspace=0.05)

        for i, sample in enumerate(samples):
            ax = plt.subplot(gs[i])
            plt.axis(off)
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            ax.set_aspect(equal)
            plt.imshow(sample.reshape(28, 28), cmap=Greys_r)

        if not os.path.exists(out/):
            os.makedirs(out/)

        plt.savefig(out/{}.png
                    .format(str(cnt).zfill(3)), bbox_inches=tight)
        cnt += 1
        plt.close(fig)

 

以上是关于InfoGAN的简易实现的主要内容,如果未能解决你的问题,请参考以下文章

Shell外壳的简易模拟

GAN(Generative Adversarial Network,GAN)模型之:InfoGANWGANDCGAN模型

简易前端模板引擎

JAVA在WEB上的应用——实现简易计算器 求代码

80行代码实现简易登录管理系统

GAN总结