迷宫里的动态规划应用
Posted echie
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了迷宫里的动态规划应用相关的知识,希望对你有一定的参考价值。
[LeetCode 63] Unique Paths II
题目
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.
测试案例
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
思路
记 nums[i][j] 表示从 (i,j) 点到达右下角的不同路径数。那么有如下递归式:
[
nums[i][j] = lbrace
egin{align}
nums[i + 1][j] + num[i][j + 1] , ;(i,j) 处无障碍 ,;(i,j) 处有障碍
end{align}
]
代码如下
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m, n;
if((m = obstacleGrid.length) < 1 || (n = obstacleGrid[0].length) < 1){
return 0;
}
int[][] nums = new int[m][n];
if((nums[m - 1][n - 1] = 1 - obstacleGrid[m - 1][n - 1]) == 0){
return 0;
}
for(int i = n - 2; i > -1; i--){
if(obstacleGrid[m - 1][i] == 1){
nums[m - 1][i] = 0;
}
else{
nums[m - 1][i] = nums[m - 1][i + 1];
}
}
for(int i = m - 2; i > -1; i--){
if(obstacleGrid[i][n - 1] == 1){
nums[i][n - 1] = 0;
}
else{
nums[i][n - 1] = nums[i + 1][n - 1];
}
}
for(int i = m - 2; i > -1; i--){
for(int j = n - 2; j > -1; j--){
if(obstacleGrid[i][j] == 1){
nums[i][j] = 0;
}
else{
nums[i][j] = nums[i + 1][j] + nums[i][j + 1];
}
}
}
return nums[0][0];
}
}
[LeetCode 64] Minimum Path Sum
题目
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
测试案例
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
代码如下
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] price = new int[m][n];
price[m - 1][n - 1] = grid[m - 1][n - 1];
for(int i = n -2; i > -1; i--){
price[m - 1][i] = price[m - 1][i + 1] + grid[m - 1][i];
}
for(int i = m - 2; i > -1; i--){
price[i][n - 1] = price[i + 1][n - 1] + grid[i][n - 1];
}
for(int i = m - 2; i> -1; i--){
for(int j = n -2; j > -1; j--){
price[i][j] = price[i + 1][j];
if(price[i][j] > price[i][j + 1]){
price[i][j] = price[i][j + 1];
}
price[i][j] += grid[i][j];
}
}
return price[0][0];
}
}
以上是关于迷宫里的动态规划应用的主要内容,如果未能解决你的问题,请参考以下文章
迷宫生成与路径规划算法-Python3.8-附Github代码
迷宫生成与路径规划算法-Python3.8-附Github代码