线性代数的几何理解
Posted schefizer
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了线性代数的几何理解相关的知识,希望对你有一定的参考价值。
矩阵:由基组成,表示标准基变换后的基
列向量:基
矩阵乘法:矩阵乘向量:矩阵变换作用于某向量;矩阵乘矩阵:两次线性变化相继作用。
空间:所有给定向量的线性组合 av+bw
线性相关:减少一个向量,但不减小张成的空间
行列式:变换后,向量围成空间的面积/体积。。。
行列式=0:进行线性变换后,空间有维度被压缩。且无法被还原,即逆矩阵不存在。
秩:空间压缩后的,新空间的维度。
零空间/核:变换后落在原点的向量的集合
相似矩阵:将矩阵A先变为我们的坐标系,再做一个线性变换A,再变回她的坐标系。得到矩阵B,B即是用她语言描述的在我们坐标系里的变换矩阵。,则B与A相似,用B乘以她坐标的任意向量
特征向量:用矩阵进行变换后,和原来坐标中一样不变的方向(向量)
特征值:不变的方向(特征向量)拉伸的倍数。
求特征值的过程:矩阵减去特征值后的变化刚好被压缩维度。
矩阵对角化:将原来的变换矩阵变为按矩阵特征基变化的矩阵
以上是关于线性代数的几何理解的主要内容,如果未能解决你的问题,请参考以下文章