HDU 6441 - Find Integer - [费马大定理][2018CCPC网络选拔赛第4题]

Posted dilthey

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 6441 - Find Integer - [费马大定理][2018CCPC网络选拔赛第4题]相关的知识,希望对你有一定的参考价值。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)

Problem Description
people in USSS love math very much, and there is a famous math problem .
give you two integers n,a,you are required to find 2 integers b,c such that $a^n + b^n = c^n$.

Input
one line contains one integer T;(1≤T≤1000000)
next T lines contains two integers n,a;(0≤n≤1000,000,000,3≤a≤40000)

Output
print two integers b,c if b,c exits;(1≤b,c≤1000,000,000);
else print two integers -1 -1 instead.

Sample Input
1
2 3

Sample Output
4 5

 

题意:

给出 $n$ 和 $a$ (0≤n≤1e9,3≤a≤4e4),要求你给出 $b$ 和 $c$ 满足 $a^n + b^n = c^n$。

 

题解:

根据费马大定理,$n > 2$ 时 $a^n + b^n = c^n$ 没有整数解,所以只需要计算 $n = 0,1,2$ 这三种情况:

1、$n = 0$,任何的正整数 $b,c$ 都无法使等式成立。

2、$n = 1$,任意取。

3、$n = 2$,$a^2 = left( {c + b} ight)left( {c - b} ight)$,分两种情况讨论:

      若 $a$ 为奇数,则 $a^2$ 也为奇数,则取 $b = frac{{a^2 - 1}}{2},c = frac{{a^2 + 1}}{2}$;

      若 $a$ 为偶数,则 $a^2$ 必然是 $4$ 的倍数,则取 $b = frac{{a^2 - 4}}{4},c = frac{{a^2 + 4}}{4}$。

      

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll a,n;

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        scanf("%lld%d",&n,&a);

        if(n==0 || n>2) printf("-1 -1
");
        if(n==1) printf("1 %lld
",a+1);
        if(n==2)
        {
            if(a%2==1) printf("%lld %lld
",(a*a-1)/2,(a*a+1)/2);
            else printf("%lld %lld
",(a*a-4)/4,(a*a+4)/4);
        }
    }
}

 


















以上是关于HDU 6441 - Find Integer - [费马大定理][2018CCPC网络选拔赛第4题]的主要内容,如果未能解决你的问题,请参考以下文章

HDU 1796How many integers can you find(容斥原理)

HDU 1796 How many integers can you find

6441. GDOI2020模拟01.17小 ω 维护序列

UvaLive6441(期望概率dp)

6441. GDOI2020模拟01.17小 ω 维护序列

HDU1047 Integer Inquiry