2018ICPC南京网络赛 AAn Olympian Math Problem(数论题)
Posted kannyi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2018ICPC南京网络赛 AAn Olympian Math Problem(数论题)相关的知识,希望对你有一定的参考价值。
Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:
We denote k!:
k! = 1 × 2 × ? × (k - 1) × k
We denote S:
S = 1 × 1! + 2 × 2! + ? + (n−1)×(n−1)!
Then S module n is ____________
You are given an integer n.
You have to calculate S modulo n.
Input
The first line contains an integer T(T≤1000), denoting the number of test cases.
For each test case, there is a line which has an integer n.
It is guaranteed that 2 ≤ n ≤ 1018.
Output
For each test case, print an integer S modulo n.
Hint
The first test is: S = 1 × 1! = 1, and 1 modulo 2 is 1.
The second test is: S = 1 × 1! + 2 × 2! = 5 , and 5 modulo 3 is 2.
样例输入
2 2 3
样例输出
1 2
题意:
已知S = 1 × 1! + 2 × 2! + ? + (n−1)×(n−1)!,求S%n的值。
思路:
直接给结论吧,S%n=n-1
#include<iostream> using namespace std; typedef long long ll; int main() { int t; cin>>t; while(t--) { ll n; cin>>n; cout<<n-1<<endl; } return 0; }
以上是关于2018ICPC南京网络赛 AAn Olympian Math Problem(数论题)的主要内容,如果未能解决你的问题,请参考以下文章
ICPC2018南京网络赛 AC Challenge(一维状压dp)