POJ 1401 Factorial

Posted daybreaking

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1401 Factorial相关的知识,希望对你有一定的参考价值。

Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 

ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6
3
60
100
1024
23456
8735373

Sample Output

0
14
24
253
5861
2183837

Hint

poj1401

 

判断n!的中末尾有多少个零。

末尾零的出现与阶乘过程中5的个数有关,因为阶乘过程中偶数的个数比5的个数多,所以没出现一个5都末尾都会有一个零,问题就转为了求 有多少个5.

求解原则:

  • 每5个数出现一个5。
  • 每25个数出现两个5.
  • 每125个数出现三个5.
  • .......

暴力求解即可。

技术分享图片
 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<string>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<stack>
 9 #include<deque>
10 #include<map>
11 #include<iostream>
12 using namespace std;
13 typedef long long  LL;
14 const double pi=acos(-1.0);
15 const double e=exp(1);
16 const int N = 210000;
17 
18 int main()
19 {
20     LL i,p,j;
21     LL n,t;
22     scanf("%lld",&t);
23     for(i=1;i<=t;i++)
24     {
25         scanf("%lld",&n);
26         LL ans=0;
27         while(1)
28         {
29             if(n<5)
30                 break;
31             ans+=n/5;
32             n/=5;
33         }
34         printf("%lld
",ans);
35     }
36     return 0;
37 }
View Code

 







以上是关于POJ 1401 Factorial的主要内容,如果未能解决你的问题,请参考以下文章

从“n!末尾有多少个0”谈起

poj 1198 / hdu 1401 Solitaire (记忆化搜索+meet in middle)

使用实体框架迁移时 SQL Server 连接抛出异常 - 添加代码片段

POJ2778DNA Sequence(AC自动机)

POJ3691DNA repair(AC自动机,DP)

片段内的表格布局