[SDOI2009]SuperGCD
Posted lajioj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[SDOI2009]SuperGCD相关的知识,希望对你有一定的参考价值。
【题面】:
[SDOI2009]SuperGCD
【思路】:
毒瘤高精。。
考这种题真不知道出题人怎么想的,高精就算了还要压八位。。我高精板子都挂了还是寻欢大神给我了个板子(qwq)
这是一道裸(du)的(liu)(GCD),当你把一切运算符都重载之后,你就可以愉快地(coding)出来(gcd)!then TLE
你还需要这个:更相减损术
可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。(orz)
具体来说,就是(如果需要对分数进行约分,那么)可以折半的话,就折半(也就是用(2)来约分)。如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分。
或者用(Stein)算法也可,都是神仙(orz)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct huge{
#define N_huge 10000
#define base 100000000
static char s[N_huge*10];
typedef long long value;
value a[N_huge];int len;
void clear(){len=1;a[len]=0;}
huge(){clear();}
huge(value x){*this=x;}
huge(char s[]){this->str(s);}
huge operator =(const huge &b){
len=b.len;for (int i=1;i<=len;++i)a[i]=b.a[i]; return *this;
}
huge operator +(const huge &b){
int L=len>b.len?len:b.len;huge tmp;
for (int i=1;i<=L+1;++i)tmp.a[i]=0;
for (int i=1;i<=L;++i){
if (i>len)tmp.a[i]+=b.a[i];
else if (i>b.len)tmp.a[i]+=a[i];
else {
tmp.a[i]+=a[i]+b.a[i];
if (tmp.a[i]>=base){
tmp.a[i]-=base;++tmp.a[i+1];
}
}
}
if (tmp.a[L+1])tmp.len=L+1;
else tmp.len=L;
return tmp;
}
huge operator -(huge b){
int L=len>b.len?len:b.len;huge tmp;
for (int i=1;i<=L+1;++i)tmp.a[i]=0;
for (int i=1;i<=L;++i){
if (i>b.len)b.a[i]=0;
tmp.a[i]+=a[i]-b.a[i];
if (tmp.a[i]<0){
tmp.a[i]+=base;--tmp.a[i+1];
}
}
while (L>1&&!tmp.a[L])--L;
tmp.len=L;
return tmp;
}
huge operator *(const huge &b)const{
int L=len+b.len;huge tmp;
for (int i=1;i<=L;++i)tmp.a[i]=0;
for (int i=1;i<=len;++i)
for (int j=1;j<=b.len;++j){
tmp.a[i+j-1]+=a[i]*b.a[j];
if (tmp.a[i+j-1]>=base){
tmp.a[i+j]+=tmp.a[i+j-1]/base;
tmp.a[i+j-1]%=base;
}
}
tmp.len=len+b.len;
while (tmp.len>1&&!tmp.a[tmp.len])--tmp.len;
return tmp;
}
pair<huge,huge> divide(const huge &a,const huge &b){
int L=a.len;huge c,d;
for (int i=L;i;--i){
c.a[i]=0;d=d*base;d.a[1]=a.a[i];
//while (d>=b){d-=b;++c.a[i];}
int l=0,r=base-1,mid;
while (l<r){
mid=(l+r+1)>>1;
if (b*mid<=d)l=mid;
else r=mid-1;
}
c.a[i]=l;d-=b*l;
}
while (L>1&&!c.a[L])--L;c.len=L;
return make_pair(c,d);
}
huge operator /(value x){
value d=0;huge tmp;
for (int i=len;i;--i){
d=d*base+a[i];
tmp.a[i]=d/x;d%=x;
}
tmp.len=len;
while (tmp.len>1&&!tmp.a[tmp.len])--tmp.len;
return tmp;
}
value operator %(value x){
value d=0;
for (int i=len;i;--i)d=(d*base+a[i])%x;
return d;
}
huge operator /(const huge &b){return divide(*this,b).first;}
huge operator %(const huge &b){return divide(*this,b).second;}
huge &operator +=(const huge &b){*this=*this+b;return *this;}
huge &operator -=(const huge &b){*this=*this-b;return *this;}
huge &operator *=(const huge &b){*this=*this*b;return *this;}
huge operator /=(const huge &b){*this=*this/b;return *this;}
huge operator %=(const huge &b){*this=*this%b;return *this;}
huge &operator ++(){huge T;T=1;*this=*this+T;return *this;}
huge &operator --(){huge T;T=1;*this=*this-T;return *this;}
huge operator ++(int){huge T,tmp=*this;T=1;*this=*this+T;return tmp;}
huge operator --(int){huge T,tmp=*this;T=1;*this=*this-T;return tmp;}
huge operator +(value x){huge T;T=x;return *this+T;}
huge operator -(value x){huge T;T=x;return *this-T;}
huge operator *(value x){huge T;T=x;return *this*T;}
//huge operator /(value x){huge T;T=x;return *this/T;}
//huge operator %(value x){huge T;T=x;return *this%T;}
huge operator *=(value x){*this=*this*x;return *this;}
huge operator +=(value x){*this=*this+x;return *this;}
huge operator -=(value x){*this=*this-x;return *this;}
huge operator /=(value x){*this=*this/x;return *this;}
huge operator %=(value x){*this=*this%x;return *this;}
bool operator ==(value x){huge T;T=x;return *this==T;}
bool operator !=(value x){huge T;T=x;return *this!=T;}
bool operator <=(value x){huge T;T=x;return *this<=T;}
bool operator >=(value x){huge T;T=x;return *this>=T;}
bool operator <(value x){huge T;T=x;return *this<T;}
bool operator >(value x){huge T;T=x;return *this>T;}
huge operator =(value x){
len=0;
while (x)a[++len]=x%base,x/=base;
if (!len)a[++len]=0;
return *this;
}
bool operator <(const huge &b){
if (len<b.len)return 1;
if (len>b.len)return 0;
for (int i=len;i;--i){
if (a[i]<b.a[i])return 1;
if (a[i]>b.a[i])return 0;
}
return 0;
}
bool operator ==(const huge &b){
if (len!=b.len)return 0;
for (int i=len;i;--i)
if (a[i]!=b.a[i])return 0;
return 1;
}
bool operator !=(const huge &b){return !(*this==b);}
bool operator >(const huge &b){return !(*this<b||*this==b);}
bool operator <=(const huge &b){return (*this<b)||(*this==b);}
bool operator >=(const huge &b){return (*this>b)||(*this==b);}
void str(char s[]){
int l=strlen(s);value x=0,y=1;len=0;
for (int i=l-1;i>=0;--i){
x=x+(s[i]-'0')*y;y*=10;
if (y==base)a[++len]=x,x=0,y=1;
}
if (!len||x)a[++len]=x;
}
void read(){
scanf("%s",s);this->str(s);
}
void print(){
printf("%d",(int)a[len]);
for (int i=len-1;i;--i){
for (int j=base/10;j>=10;j/=10){
if (a[i]<j)printf("0");
else break;
}
printf("%d",(int)a[i]);
}
printf("
");
}
};char huge::s[N_huge*10];
huge gcd(huge a,huge b){
huge c;c.clear();
c = 1;
while(((a%2)==0)&&((b%2)==0)){
a/=2;
b/=2;
c*=2;
}
while(a!=b){
if(a>b)a-=b;
else b-=a;
}
c*=a;
return c;
}
huge a;
huge b;
huge ans;
int main(){
a.read();b.read();
ans = gcd(a,b);
ans.print();
}
以上是关于[SDOI2009]SuperGCD的主要内容,如果未能解决你的问题,请参考以下文章