[SDOI2016]征途

Posted beretty

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[SDOI2016]征途相关的知识,希望对你有一定的参考价值。

题目描述

Pine开始了从S地到T地的征途。

从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。

Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。

Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。

帮助Pine求出最小方差是多少

输入输出格式

输入格式:

第一行两个数 n、m。

第二行 n 个数,表示 n 段路的长度

输出格式:

一个数,最小方差乘以 m^2后的值

输入输出样例

输入样例#1:

5 2
1 2 5 8 6

输出样例#1:

36

说明

对于 100% 的数据 n≤3000
保证从 S 到 T 的总路程不超过 30000 。


斜率优化

我这题式子还化错了

求方差一脸懵逼==

首先根据方差的定义 (s^2 = sum_{i=1}^{m}{(x[i] - everagex)})

x[]表示每天走的路的长度

又因为题目要我们求方差乘上一个m^2

所以 (Ans = m^2 sum_{i=1}^{m}{x[i]-everagex}吗)

然后我们把式子化简一下

(Ans = msum{x[i]^2} - 2 m * everagex sum{x[i]} + m sum{everagex^2})

(Ans = msum{x[i]^2} - 2 * sum[n] * sum[n] + m * everagex sum{everagex})

$Ans = msum{x[i]^2} - 2 * sum[n]^2 + sum[n]^2 $

(Ans = msum{x[i]^2} - sum[n]^2)

然后就会发现第二项可以直接算出来

所以我们只需要考虑让(msum{x[i]^2})最小就可以了

这样是不是就可以DP了?

(f[i][j])表示第i天结束走完第j条路

DP式子也肥肠显然

(f[i][j] = f[i - 1][k] + (sum[j] - sum[k])^2)

然后再斜率优化一下

就一天一天的处理,所以可以消掉一维

(f[i])表示到第i条路的最小方差

(pre[i])表示前一天到第i条路得最小方差

(2 * sum[i] * sum[j] + f[i] = pre[j] + sum[i]^2 + sum[j]^2)

(k = 2 * sum[i])

(x= sum[j])

(y = pre[j] + sum[j]^2)

然后就是要注意预处理出只走一天的情况 (f[i] = sum[i]*sum[i])


#include<cstdio>
#include<cstring>
#include<algorithm>
# define int long long
const int M = 3005 ;
using namespace std ;
inline int read() {
    char c = getchar() ; int x = 0 , w = 1 ;
    while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
    while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
    return x*w ;
}
int n , m ;
int p[M] , sum[M] , tot ;
int f[M] , pre[M] , q[M] , head , tail ;
inline double X(int i) { return sum[i] ; }
inline double Y(int i) { return pre[i] + sum[i] * sum[i] ; }
inline double Slope(int i , int j) { return (Y(i) - Y(j)) / (X(i) - X(j)) ;}
# undef int
int main() {
# define int long long
    n = read() ; m = read() ;
    for(int i = 1 ; i <= n ; i ++) {
        p[i] = read() ;
        sum[i] = sum[i - 1] + p[i] ;
        pre[i] = sum[i] * sum[i] ;
    }
    for(int T = 1 ; T < m ; T ++) {
        head = tail = 1 ;
        for(int i = 1 ; i <= n ; i ++) {
            while(head < tail && Slope(q[head] , q[head + 1]) < 2 * sum[i]) ++head ;
            int j = q[head] ;
            f[i] = pre[j] + (sum[i] - sum[j]) * (sum[i] - sum[j]) ;
            while(head < tail && Slope(q[tail - 1] , q[tail]) > Slope(q[tail - 1] , i)) --tail ;
            q[++tail] = i ;
        }
        for(int i = 1 ; i <= n ; i ++) pre[i] = f[i] ;
    }
    printf("%lld
",f[n] * m - sum[n] * sum[n]) ;
    return 0 ;
}

以上是关于[SDOI2016]征途的主要内容,如果未能解决你的问题,请参考以下文章

[SDOI2016]征途

bzoj4518[Sdoi2016]征途 斜率优化dp

[SDOI2016]征途

luoguP4072 [SDOI2016]征途

BZOJ4518[Sdoi2016]征途 斜率优化

4518: [Sdoi2016]征途|斜率优化