HDU 4578 - Transformation - [加强版线段树]
Posted dilthey
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 4578 - Transformation - [加强版线段树]相关的知识,希望对你有一定的参考价值。
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
题意:
给出一个序列,有下列操作:
- 对区间[x,y]全部加上c
- 对区间[x,y]全部乘上c
- 将区间[x,y]全部改成c
- 查询区间[x,y]的p次方和
题解:
加强版的线段树,需要三个lazy标记,一个add表示加法标记,一个mul表示乘法标记,一个alt表示修改标记,
同时由于p=1,2,3,所以可以有三个val值:sum1表示一次方和,sum2表示平方和,sum3表示立方和,
然后我们要确定三个标记的优先级:alt第一,mul第二,add第三,pushdown的时候要按照这样的顺序pushdown,
同时下压高优先级的标记,会影响到低优先级的标记,这个需要注意,
另外,在接收到父节点传过来的add标记时,更新自身时(update_add成员函数),要注意计算sum3,sum2,sum1的先后顺序,一定是sum3,sum2,sum1,
这三个sum计算的方法如下:
$egin{array}{l} left( {a + x} ight)^2 = a^2 + 2ax + x^2 \ left( {a_1 + x} ight)^2 + left( {a_2 + x} ight)^2 + cdots + left( {a_n + x} ight)^2 = left( {a_1 ^2 + cdots + a_n ^2 } ight) + 2xleft( {a_1 + cdots + a_n } ight) + nx^2 \ left( {a + x} ight)^3 = a^3 + 3a^2 x + 3ax^2 + x^3 \ left( {a_1 + x} ight)^3 + left( {a_2 + x} ight)^3 + cdots + left( {a_n + x} ight)^3 = left( {a_1 ^3 + cdots + a_n ^3 } ight) + 3xleft( {a_1 ^2 + cdots + a_n ^2 } ight) + 3x^2 left( {a_1 + cdots + a_n } ight) + nx^3 \ end{array}$
AC代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn=100000+10; const int MOD=10007; int n,m; /********************************* Segment Tree - st *********************************/ struct Node { int l,r; int sum1,sum2,sum3; int add,mul,alt; void Update_Alt(int x) { x%=MOD; sum1 = (r-l+1) * x % MOD; sum2 = (r-l+1) * x % MOD * x % MOD; sum3 = (r-l+1) * x % MOD * x % MOD * x % MOD; alt=x; add=0; mul=1; } void Update_Mul(int x) { x%=MOD; sum1 = sum1 % MOD * x % MOD; sum2 = sum2 % MOD * x % MOD * x % MOD; sum3 = sum3 % MOD * x % MOD * x % MOD * x % MOD; mul = mul % MOD * x % MOD; add = add % MOD * x % MOD; } void Update_Add(int x) { x%=MOD; sum3 = ( sum3%MOD + 3*x%MOD*sum2%MOD + 3*x%MOD*x%MOD*sum1%MOD + (r-l+1)*x%MOD*x%MOD*x%MOD ) % MOD; sum2 = ( sum2%MOD + 2*x%MOD*sum1%MOD + (r-l+1)%MOD*x%MOD*x%MOD ) % MOD; sum1 = ( sum1%MOD + (r-l+1)%MOD*x%MOD ) % MOD; add=(add%MOD+x)%MOD; } }node[4*maxn]; void Pushdown(int root) { int ls=root*2, rs=root*2+1; if(node[root].alt!=0) { node[ls].Update_Alt(node[root].alt); node[rs].Update_Alt(node[root].alt); node[root].alt=0; } if(node[root].mul!=1) { node[ls].Update_Mul(node[root].mul); node[rs].Update_Mul(node[root].mul); node[root].mul=1; } if(node[root].add!=0) { node[ls].Update_Add(node[root].add); node[rs].Update_Add(node[root].add); node[root].add=0; } } void Pushup(int root) { int ls=root*2, rs=root*2+1; node[root].sum1=(node[ls].sum1+node[rs].sum1)%MOD; node[root].sum2=(node[ls].sum2+node[rs].sum2)%MOD; node[root].sum3=(node[ls].sum3+node[rs].sum3)%MOD; } void Build(int root,int l,int r) //对区间[l,r]建树 { if(l>r) return; node[root].l=l; node[root].r=r; node[root].sum1=0; node[root].sum2=0; node[root].sum3=0; node[root].alt=0; node[root].add=0; node[root].mul=1; if(l<r) { int mid=l+(r-l)/2; Build(root*2,l,mid); Build(root*2+1,mid+1,r); Pushup(root); } } void Alt(int root,int st,int ed,ll val) //区间[st,ed]全部改成val { if(st>node[root].r || ed<node[root].l) return; if(st<=node[root].l && node[root].r<=ed) node[root].Update_Alt(val); else { Pushdown(root); Alt(root*2,st,ed,val); Alt(root*2+1,st,ed,val); Pushup(root); } } void Mul(int root,int st,int ed,ll val) //区间[st,ed]全部加上val { if(st>node[root].r || ed<node[root].l) return; if(st<=node[root].l && node[root].r<=ed) node[root].Update_Mul(val); else { Pushdown(root); Mul(root*2,st,ed,val); Mul(root*2+1,st,ed,val); Pushup(root); } } void Add(int root,int st,int ed,ll val) //区间[st,ed]全部加上val { if(st>node[root].r || ed<node[root].l) return; if(st<=node[root].l && node[root].r<=ed) node[root].Update_Add(val); else { Pushdown(root); Add(root*2,st,ed,val); Add(root*2+1,st,ed,val); Pushup(root); } } int Query(int root,int st,int ed,int p) //查询区间[st,ed]的p次方和 { if(st>node[root].r || ed<node[root].l) return 0; if(st<=node[root].l && node[root].r<=ed) { if(p==1) return node[root].sum1; if(p==2) return node[root].sum2; if(p==3) return node[root].sum3; } else { Pushdown(root); int ls=Query(root*2,st,ed,p)%MOD; int rs=Query(root*2+1,st,ed,p)%MOD; Pushup(root); return (ls+rs)%MOD; } } /********************************* Segment Tree - st *********************************/ int main() { while(scanf("%d%d",&n,&m) && n*m!=0) { Build(1,1,n); for(int i=1;i<=m;i++) { int op; scanf("%d",&op); if(op==1) { int x,y,k; scanf("%d%d%d",&x,&y,&k); Add(1,x,y,k); } if(op==2) { int x,y,k; scanf("%d%d%d",&x,&y,&k); Mul(1,x,y,k); } if(op==3) { int x,y,k; scanf("%d%d%d",&x,&y,&k); Alt(1,x,y,k); } if(op==4) { int l,r,p; scanf("%d%d%d",&l,&r,&p); printf("%d ",Query(1,l,r,p)); } } } }
以上是关于HDU 4578 - Transformation - [加强版线段树]的主要内容,如果未能解决你的问题,请参考以下文章
30-Transformation(HDU4578)-区间线段树(复杂)