Tensorflow实战目标检测

Posted logo-88

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow实战目标检测相关的知识,希望对你有一定的参考价值。

首先到github下载相应的Tensorflow模型,以及配置好环境。具体的可参考这篇博客

或者参考Github上,TensorFlow models/research/object_detection里的安装教程

这里给出一个视频里面的目标检测代码:

import os
import time
import argparse
import multiprocessing
import numpy as np
import tensorflow as tf
import tarfile
from matplotlib import pyplot as plt

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util
‘‘‘
    视频目标追踪
‘‘‘
#1.得到模型 (这里首先下载流模型并在解压在path/to/models/research/object_detection里面)
MODEL_NAME = ssd_mobilenet_v1_coco_2017_11_17
PATH_TO_CKPT = os.path.join(MODEL_NAME, frozen_inference_graph.pb)

PATH_TO_LABELS = os.path.join(data, mscoco_label_map.pbtxt)

print(Loading model...)


#load frozen of tensorflow to memeory
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, rb) as fid: #文本操作句柄,类似python里面的open()
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name=‘‘)  #将图像从od_graph_def导入当前的默认Graph

#label map to class name 如预测为5,知道它是对应飞机
NUM_CLASS = 90

print("Loading label map...")
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)  #得到label map proto
categories = label_map_util.convert_label_map_to_categories(label_map, NUM_CLASS) #得到类别
category_index = label_map_util.create_category_index(categories) 


#2.对视频进行物体检测
def detect_objects(image_np, sess, detection_graph):
    image_np_expanded = np.expand_dims(image_np, axis=0)
    image_tensor = detection_graph.get_tensor_by_name(image_tensor:0)

    boxes = detection_graph.get_tensor_by_name(detection_boxes:0)

    scores = detection_graph.get_tensor_by_name(detection_scores:0)

    classes = detection_graph.get_tensor_by_name(detection_classes:0)

    num_detections = detection_graph.get_tensor_by_name(num_detections:0)

    #Actual detection
    (boxes, scores, classes, num_detections) = sess.run(
        [boxes, scores, classes, num_detections], feed_dict={image_tensor : image_np_expanded})

    #Visualization of the results of a detection
    vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes),
                                                       np.squeeze(classes).astype(np.int32),
                                                       np.squeeze(scores),
                                                       category_index,
                                                       use_normalized_coordinates=True,
                                                       line_thickness=8)
    return image_np

from moviepy.editor import VideoFileClip
from IPython.display import html

def process_image(image):
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            image_process = detect_objects(image, sess, detection_graph)
            return image_process

white_output = /home/magic/111_out.mp4
clip1 = VideoFileClip("/home/magic/111.avi")
white_clip = clip1.fl_image(process_image)  #This function expects color images!
white_clip.write_videofile(white_output, audio=False)


#等待一段时间后,得到111_out.mp4,可以去查看效果  我的测试结果如下

技术分享图片

 








以上是关于Tensorflow实战目标检测的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow2深度学习实战(十七):目标检测算法 Faster R-CNN 实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十五):目标检测算法 YOLOv4 实战