Numpy学习

Posted yqpy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Numpy学习相关的知识,希望对你有一定的参考价值。

决定陆陆续续写一些Numpy的例子。。

1.

如果想表示e的x次,就可以这样用,下面直接写一个sigmod函数:

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

2.

numpy也可以来进行矩阵运算

最简单的如下:

①、首先是一位数组之间的相乘

import random
d1 = np.arange(9)
random.shuffle(d1)
d2 = np.arange(9)
random.shuffle(d2)
print(d1,
,d2)

#
[5 2 8 0 1 7 6 4 3] 
[1 6 5 3 4 8 0 7 2]

产生两个维度一样的数组,顺便复习一下random的用法

接下来

np.dot(d1,d2)

#151

也就是向量的内积

②、接下来是矩阵的相乘,先产生两个矩阵,一个2乘3,一个3乘4

d1 = np.arange(1,7).reshape(2,3)
d2 = np.arange(2,14).reshape(3,4)
print(d1,‘ ‘,‘-‘*10,‘ ‘,d2)



#[[1 2 3]
 [4 5 6]] 
 ---------- 
 [[ 2  3  4  5]
 [ 6  7  8  9]
 [10 11 12 13]]
np.dot(d1,d2)

#
array([[ 44,  50,  56,  62],
       [ 98, 113, 128, 143]])

得到2乘4的矩阵,注意这里d1和d2的顺序一旦相反,矩阵相乘的结果也不一样了

3.

这个例子我们讲一下用pandas和numpy共同对数据进行处理

首先我们的数据是这样子的:

import os
import numpy as np
import pandas as pd
path = data + os.sep + LogiReg_data.txt
pdData = pd.read_csv(path, header=None, names=[Exam 1, Exam 2, Admitted])
pdData.head()

技术分享图片

我们需要的操作是:给数据增加一列全为1(加在第一列),然后分为X和Y两部分,其中X是一个三行100列(数据一共100个样本)的矩阵,第一列是1,第二列是Exam1,第二列是Exam2,Y是一个列向量,也就是Admitted,好了,开始操作:

pdData.insert(0, Ones, 1) # in a try / except structure so as not to return an error if the block si executed several times

# set X (training data) and y (target variable)
orig_data = pdData.as_matrix() # convert the Pandas representation of the data to an array useful for further computations
cols = orig_data.shape[1]
X = orig_data[:,0:cols-1]
y = orig_data[:,cols-1:cols]

# convert to numpy arrays and initalize the parameter array theta
#X = np.matrix(X.values)
#y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values)
theta = np.zeros([1, 3])

第一行代码就是给原数据第一列加上名称为‘Ones’且值全为1的列,如果要删除,需要这样:

 

pdData.drop(Ones, axis=1,inplace=True #其中inplace的值为True代表对原数据进行了改动,而如果不加inpalce或者为False,则表示将删除结果作为另外的返回值,原数组没有变化

第二行代码表示将pandas的这个数据转为numpy里的数组,也就是

numpy.ndarray
第三行代码表示取数组里第二维度的大小,也就是列的大小(0是行)
接下来的代码应该不用解释了吧,看一下数据的结果:
X[:5]

#array([[ 1.        , 34.62365962, 78.02469282],
       [ 1.        , 30.28671077, 43.89499752],
       [ 1.        , 35.84740877, 72.90219803],
       [ 1.        , 60.18259939, 86.3085521 ],
       [ 1.        , 79.03273605, 75.34437644]])
y[:5]

#array([[0.],
       [0.],
       [0.],
       [1.],
       [1.]])
theta

#array([[ 0.,  0.,  0.]])

 











以上是关于Numpy学习的主要内容,如果未能解决你的问题,请参考以下文章

Numpy学习:《Python数据分析基础教程NumPy学习指南第2版》中文PDF+英文PDF+代码

《Python机器学习及实践》----无监督学习之数据聚类

《Python机器学习及实践》----无监督学习之数据聚类

Numpy学习笔记

Numpy学习一:array数组对象

Numpy学习练习代码 ——