单调栈+贪心维护LIC
Posted artlover
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了单调栈+贪心维护LIC相关的知识,希望对你有一定的参考价值。
普通:O((N^2))
状态:dp[j]表示,以j结尾的最长的上升子序列
转移:dp[j]=dp[i]+1(if a[j]>a[i] )
初始化:dp[i]=1
优化(nlogn)
solution:维护stack[top]表示长度为top的最长子序列结尾最小的是stack[top]
贪心+dp
code:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXX=100010;
int a[MAXX],stack[MAXX];
int top,n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",&a[i]);
for(int i=1;i<=n;++i){
if(a[i]>stack[top])stack[++top]=a[i];
else {
int pos=lower_bound(stack+1,stack+top+1,a[i])-stack;
stack[pos]=a[i];
}
}
cout<<top;
return 0;
}
以上是关于单调栈+贪心维护LIC的主要内容,如果未能解决你的问题,请参考以下文章