luogu3810 陌上花开 (cdq分治)

Posted ressed

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luogu3810 陌上花开 (cdq分治)相关的知识,希望对你有一定的参考价值。

求三维偏序

设三维为a,b,c。先对a排序,这样i的偏序就只能<i。

然而排序的时候需要三个维度都判断一遍,最后还要去重,不然会出现实际应该记答案的数出现在它后面的情况。

(排序用的函数里不要写类似于<=之类的东西啊..会出奇奇怪怪的问题的(RE))

然后分治来做,我们在做区间[l,r]的时候,先去做[l,m]和[m+1,r]

之后左区间[l,m],右区间[m+1,r]都已经按照b排好序了,而且左右两区间内部的答案已经统计过了,所以现在只要考虑左区间中满足(右区间的数)的数量就好了。

那么就也把[l,r]按照b排好序,在排的时候再用一个权值树状数组维护c,

也就是,如果这个点是左区间的点,就把它的c值对应的树状数组中+=这个点的重复数(刚才去重了)

    如果这个点是右区间的点,就询问树状数组中<=它的c值的数量,然后加到这个点的答案里。

而且每次做的时候树状数组都要清空,但不能用memset来清,复杂度有问题。(一直迷信memset的速度,结果一查告诉我也就比循环清快一倍??)

所以只要把刚才加过的再减回去就可以了。

复杂度$O(n*log_2n*log_2k)$

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#include<ctime>
#define LL long long int
#define inf 0x3f3f3f3f
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int maxn=100010,maxk=200020;

LL rd(){
   LL x=0;char c=getchar();int neg=1;
   while(c<0||c>9){if(c==-) neg=-1;c=getchar();}
   while(c>=0&&c<=9) x=x*10+c-0,c=getchar();
   return x*neg;
}

struct Node{
    int a,b,c,i;
}inp[maxn],num[maxn],tmp[maxn];
int iniN,N,K;
int tr[maxk],cnt[maxn],siz[maxn],ans[maxn];

inline bool cmp(Node a,Node b){return a.a==b.a?(a.b==b.b?a.c<b.c:a.b<b.b):a.a<b.a;}

inline void add(int x,int y){
    while(x&&x<=K) tr[x]+=y,x+=lowbit(x);
}
inline int query(int x){
    int re=0;while(x) re+=tr[x],x-=lowbit(x);return re;
}

void cdq(int l,int r){
    int m=l+r>>1,p=l,q=m+1,t=0;
    if(l>=r) return;
    cdq(l,m);cdq(m+1,r);
    while(p<=m&&q<=r){
        if(num[p].b<=num[q].b){
            tmp[++t]=num[p];add(num[p].c,siz[num[p].i]);p++;
        }else{
            tmp[++t]=num[q];cnt[num[q].i]+=query(num[q].c);q++;
        }
    }    while(q<=r){
        tmp[++t]=num[q];cnt[num[q].i]+=query(num[q].c);q++;
    }for(int i=l;i<p;i++) add(num[i].c,-siz[num[i].i]);
    while(p<=m) tmp[++t]=num[p++];

    memcpy(num+l,tmp+1,sizeof(Node)*t);
}

int main(){
    int i,j,k;
    iniN=N=rd();K=rd();
    for(i=1;i<=N;i++){
        int a=rd(),b=rd(),c=rd();
        inp[i].a=a;inp[i].b=b;inp[i].c=c;num[i].i=i;
    }
    sort(inp+1,inp+N+1,cmp);//printf("ll");
    for(i=1,j=0;i<=N;i++){
        if(inp[i].a==inp[i-1].a&&inp[i].b==inp[i-1].b&&inp[i].c==inp[i-1].c) inp[i].i=j,cnt[j]++,siz[j]++;
        else{
            inp[i].i=++j;num[j]=inp[i];siz[j]=1;
        }
    }N=j;
    cdq(1,N);
    for(i=1;i<=N;i++) ans[cnt[i]]+=siz[i];
    for(i=0;i<iniN;i++) printf("%d
",ans[i]);
    return 0;
}

 

以上是关于luogu3810 陌上花开 (cdq分治)的主要内容,如果未能解决你的问题,请参考以下文章

P3810 模板三维偏序(陌上花开)cdq分治

「luogu3810」陌上花开

洛谷 P3810 模板三维偏序(陌上花开) (cdq分治模板)

P3810 模板三维偏序(陌上花开)(cdq分治)

P3810 -三维偏序(陌上花开)cdq-分治

[luogu3810][bzoj3262][陌上花开]