框架tensorflow3
Posted weizitianming
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了框架tensorflow3相关的知识,希望对你有一定的参考价值。
tensorflow3
tensorflow 可视化好帮手;
tf.train.SummaryWriter报错,改为tf.summary.FileWriter
软件包安装yum install sqlite-devel
[[email protected] tensorflow]# python3 tensor6.py 2018-08-24 21:14:52.513641: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA [[email protected] tensorflow]# ls events.out.tfevents.1535116493.shenzhen.com tensor2.py tensor4.py tensor6.py tensor1.py tensor3.py tensor5.py [[email protected] tensorflow]# cat tensor6.py #!/usr/local/bin/python3 #coding:utf-8 import tensorflow as tf def add_layer(inputs,in_size, out_size, activation_function=None): #add one more layer and return the output of this layer with tf.name_scope(‘layer‘): with tf.name_scope(‘weights‘): Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=‘W‘) with tf.name_scope(‘biases‘): biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name=‘b‘) with tf.name_scope(‘Wx_plus_b‘): Wx_plus_b = tf.add(tf.matmul(inputs, Weights),biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b,) return outputs #define placeholder for inputs to network with tf.name_scope(‘inputs‘): xs = tf.placeholder(tf.float32,[None,1],name=‘x_input‘) ys = tf.placeholder(tf.float32,[None,1],name=‘y_input‘) #add hidden layer l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) #add output layer prediction = add_layer(l1,10,1,activation_function=None) #the error between prediction and real data with tf.name_scope(‘loss‘): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) with tf.name_scope(‘train‘): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() writer = tf.summary.FileWriter(‘.‘,sess.graph) #important step sess.run(init)
#tensorboard --logdir=‘/logs/‘
访问浏览器:、、、、
以上是关于框架tensorflow3的主要内容,如果未能解决你的问题,请参考以下文章
深度学习:从头设计一个TensorFlow3一样的新一代深度学习系统,到底需要把握哪些要点?
text 来自Codyhouse框架的Browserlist片段源代码
使用实体框架迁移时 SQL Server 连接抛出异常 - 添加代码片段
SpringCloud系列四:Eureka 服务发现框架(定义 Eureka 服务端Eureka 服务信息Eureka 发现管理Eureka 安全配置Eureka-HA(高可用) 机制Eur(代码片段