[HAOI2009] 逆序对数列

Posted lmsh7

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[HAOI2009] 逆序对数列相关的知识,希望对你有一定的参考价值。

[HAOI2009] 逆序对数列

题目大意:求([1,n])的自然数的排列中逆序对数为(k)的有多少.

这样来DP

  • 状态:设(f[i][j])(i)个数,逆序对数为(j)的种类数目

  • 转移方程:(f[i][j] = sum limits _{k=j-i+1}^{j}f[i-1][k]),(i)时最多可以贡献(i-1)对逆序对,也就是(k)最极限也就(j-(i+1))
  • 优化:前缀和即可

代码

无优化

#include <iostream>
#include <cstdio>

const int Mod = 10000;

int f[1005][1005];

int main(){
    int n, k;
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; ++i){
        f[i][0] = 1;
        for(int j = 1; j <= k; ++j){
            for(int q = std::max(j - i + 1, 0); q <= j; ++q){
                f[i][j] = (f[i][j] + f[i - 1][q]) % Mod;
            }
        }
    }
    printf("%d
", f[n][k]);

    return 0;
}

优化

#include <iostream>
#include <cstdio>

const int Mod = 10000;

int f[1005][1005], sum[1005];

int main(){
    int n, k;
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; ++i){
        f[i][0] = 1;
        for(int q = 1; q <= k + 1; ++q){
            sum[q] = (sum[q - 1] + f[i - 1][q - 1]) % Mod;
        }//更新前缀和,这里的要注意下这个前缀和代表的比较特殊,不是普通的i到j是sum[i]-sum[j-1],得加1
        for(int j = 1; j <= k; ++j){
            f[i][j] = (sum[j + 1] - sum[j - i + 1] + Mod) % Mod;
        }//前缀和减去不能达到的
    }
    printf("%d
", f[n][k]);

    return 0;
}

错误

  • 先写了一遍没有优化的,日常忘记模数
  • 但是因为(j-i+1)会小于(0),这是不被允许的
  • (std::max(j-i+1,1))不行,因为可以到(0),应该是(std::max(j-i+1,1))
  • 优化后因为有个相减再取模,忘记(+Mod)

以上是关于[HAOI2009] 逆序对数列的主要内容,如果未能解决你的问题,请参考以下文章

洛谷P2513 [HAOI2009]逆序对数列

BZOJ 2431: [HAOI2009]逆序对数列

[HAOI2009]逆序对数列

[HAOI 2009]逆序对数列

[HAOI2009]逆序对数列

BZOJ-2431: [HAOI2009]逆序对数列 (傻逼递推)