opencv-图像形态学之膨胀腐蚀
Posted tang-tangt
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv-图像形态学之膨胀腐蚀相关的知识,希望对你有一定的参考价值。
转自:https://blog.csdn.net/poem_qianmo/article/details/23710721
一、原理
1.1 形态学概述
形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。
数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。
简单来讲,形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种:膨胀与腐蚀(Dilation与Erosion)。
膨胀与腐蚀能实现多种多样的功能,主要如下:
- 消除噪声
- 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
- 寻找图像中的明显的极大值区域或极小值区域
- 求出图像的梯度
我们在这里给出下文会用到的,用于对比膨胀与腐蚀运算的“浅墨”字样毛笔字原图:
在进行腐蚀和膨胀的讲解之前,首先需要注意,腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。膨胀就是图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。
1.2 膨胀
其实,膨胀就是求局部最大值的操作。
按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。
核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。
而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷。
膨胀的数学表达式:
膨胀效果图(毛笔字):
1.3 腐蚀
再来看一下腐蚀,大家应该知道,膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作。
我们一般都会把腐蚀和膨胀对应起来理解和学习。下文就可以看到,两者的函数原型也是基本上一样的。
原理图:
腐蚀的数学表达式:
腐蚀效果图(毛笔字):
二、OpenCV源码分析溯源
直接上源码吧,在…opencvsourcesmodulesimgprocsrc morph.cpp路径中 的第1353行开始就为erode(腐蚀)函数的源码,1361行为dilate(膨胀)函数的源码。
//-----------------------------------【erode()函数中文注释版源代码】---------------------------- // 说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码 // OpenCV源代码版本:2.4.8 // 源码路径:…opencvsourcesmodulesimgprocsrc morph.cpp // 源文件中如下代码的起始行数:1353行 // 中文注释by浅墨 //-------------------------------------------------------------------------------------------------------- void cv::erode( InputArray src, OutputArraydst, InputArray kernel, Point anchor, int iterations, int borderType, constScalar& borderValue ) { //调用morphOp函数,并设定标识符为MORPH_ERODE morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType,borderValue ); }
//-----------------------------------【dilate()函数中文注释版源代码】---------------------------- // 说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码 // OpenCV源代码版本:2.4.8 // 源码路径:…opencvsourcesmodulesimgprocsrc morph.cpp // 源文件中如下代码的起始行数:1361行 // 中文注释by浅墨 //-------------------------------------------------------------------------------------------------------- void cv::dilate( InputArray src,OutputArray dst, InputArray kernel, Point anchor, int iterations, int borderType, constScalar& borderValue ) { //调用morphOp函数,并设定标识符为MORPH_DILATE morphOp( MORPH_DILATE, src, dst, kernel, anchor, iterations, borderType,borderValue ); }
可以发现erode和dilate这两个函数内部就是调用了一下morphOp,只是他们调用morphOp时,第一个参数标识符不同,一个为MORPH_ERODE(腐蚀),一个为MORPH_DILATE(膨胀)。
morphOp函数的源码在…opencvsourcesmodulesimgprocsrcmorph.cpp中的第1286行,有兴趣的朋友们可以研究研究,这里就不费时费力花篇幅展开分析了。
三、浅出——API函数快速上手
3.1 形态学膨胀——dilate函数
erode函数,使用像素邻域内的局部极大运算符来膨胀一张图片,从src输入,由dst输出。支持就地(in-place)操作。
函数原型:
C++: void dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() );
参数详解:
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
- 第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。
我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。
其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:
- 矩形: MORPH_RECT
- 交叉形: MORPH_CROSS
- 椭圆形: MORPH_ELLIPSE
而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。
我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。
getStructuringElement函数相关的调用示例代码如下:
int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸 //获取自定义核 Mat element = getStructuringElement(MORPH_RECT, Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1), Point( g_nStructElementSize, g_nStructElementSize ));
调用这样之后,我们便可以在接下来调用erode或dilate函数时,第三个参数填保存了getStructuringElement返回值的Mat类型变量。对应于我们上面的示例,就是填element变量。
- 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
- 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
- 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
- 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。
调用范例:
//载入原图 Mat image = imread("1.jpg"); //获取自定义核 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); Mat out; //进行膨胀操作 dilate(image, out, element);
用上面核心代码架起来的完整程序代码:
//-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> #include <iostream> //-----------------------------------【命名空间声明部分】--------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace std; using namespace cv; //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,我们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( ) { //载入原图 Mat image = imread("1.jpg"); //创建窗口 namedWindow("【原图】膨胀操作"); namedWindow("【效果图】膨胀操作"); //显示原图 imshow("【原图】膨胀操作", image); //获取自定义核 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); Mat out; //进行膨胀操作 dilate(image,out, element); //显示效果图 imshow("【效果图】膨胀操作", out); waitKey(0); return 0; }
运行截图:
3.2 形态学腐蚀——erode函数
erode函数,使用像素邻域内的局部极小运算符来腐蚀一张图片,从src输入,由dst输出。支持就地(in-place)操作。
看一下函数原型:
C++: void erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() );
参数详解:
- 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
- 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
- 第三个参数,InputArray类型的kernel,腐蚀操作的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。(具体看上文中浅出部分dilate函数的第三个参数讲解部分)
- 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于单位(element)的中心,我们一般不用管它。
- 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
- 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
- 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
同样的,使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。
调用范例:
//载入原图 Mat image = imread("1.jpg"); //获取自定义核 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); Mat out; //进行腐蚀操作 erode(image,out, element);
用上面核心代码架起来的完整程序代码:
//-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> #include <iostream> //-----------------------------------【命名空间声明部分】--------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace std; using namespace cv; //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,我们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( ) { //载入原图 Matimage = imread("1.jpg"); //创建窗口 namedWindow("【原图】腐蚀操作"); namedWindow("【效果图】腐蚀操作"); //显示原图 imshow("【原图】腐蚀操作", image); //获取自定义核 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); Mat out; //进行腐蚀操作 erode(image,out, element); //显示效果图 imshow("【效果图】腐蚀操作", out); waitKey(0); return 0; }
运行结果:
以上是关于opencv-图像形态学之膨胀腐蚀的主要内容,如果未能解决你的问题,请参考以下文章
详解图像形态学操作之图形的腐蚀和膨胀的概念和运算过程,并利用OpenCV的函数erode()和函数dilate()对图像进行腐蚀和膨胀操作