InputFormat的数据划分Split调度数据读取

Posted ggzhangxiaochao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了InputFormat的数据划分Split调度数据读取相关的知识,希望对你有一定的参考价值。

在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动相应的N个Map程序来分别处理它们。
数据如何划分?Split如何调度(如何决定处理Split的Map程序应该运行在哪台TaskTracker机器上)?划分后的数据又如何读取?这就是本文所要讨论的问题。

先从一张经典的MapReduce工作流程图出发:
技术分享图片 


1、运行mapred程序;
2、本次运行将生成一个Job,于是JobClient向JobTracker申请一个JobID以标识这个Job;
3、JobClient将Job所需要的资源提交到HDFS中一个以JobID命名的目录中。这些资源包括JAR包、配置文件、InputSplit、等;
4、JobClient向JobTracker提交这个Job;
5、JobTracker初始化这个Job;
6、JobTracker从HDFS获取这个Job的Split等信息;
7、JobTracker向TaskTracker分配任务;
8、TaskTracker从HDFS获取这个Job的相关资源;
9、TaskTracker开启一个新的JVM;
10、TaskTracker用新的JVM来执行Map或Reduce;
……
对于之前提到的三个问题,这个流程中的几个点需要展开一下。

首先是“数据如何划分”的问题。
在第3步中,JobClient向HDFS提交的资源就包含了InputSplit,这就是数据划分的结果。也就是说,数据划分是在JobClient上完成的。在这里,JobClient会使用指定的InputFormat将输入数据做一次划分,形成若干个Split。

InputFormat是一个interface。用户在启动MapReduce的时候需要指定一个InputFormat的implement。InputFormat只包含了两个接口函数:
InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;
RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException;
getSplits就是现在要使用的划分函数。job参数是任务的配置集合,从中可以取到用户在启动MapReduce时指定的输入文件路径。而numSplits参数是一个Split数目的建议值,是否考虑这个值,由具体的InputFormat实现来决定。
返回的是InputSplit数组,它描述了所有的Split信息,一个InputSplit描述一个Split。

InputSplit也是一个interface,具体返回什么样的implement,这是由具体的InputFormat来决定的。InputSplit也只有两个接口函数:
long getLength() throws IOException;
String[] getLocations() throws IOException;
这个interface仅仅描述了Split有多长,以及存放这个Split的Location信息(也就是这个Split在HDFS上存放的机器。它可能有多个replication,存在于多台机器上)。除此之外,就再没有任何直接描述Split的信息了。比如:Split对应于哪个文件?在文件中的起始和结束位置是什么?等等重要的特征都没有描述到。
为什么会这样呢?因为关于Split的那些描述信息,对于MapReduce框架来说是不需要关心的。框架只关心Split的长度(主要用于一些统计信息)和Split的Location(主要用于Split的调度,后面会细说)。
而Split中真正重要的描述信息还是只有InputFormat会关心。在需要读取一个Split的时候,其对应的InputSplit会被传递到InputFormat的第二个接口函数getRecordReader,然后被用于初始化一个RecordReader,以解析输入数据。也就是说,描述Split的重要信息都被隐藏了,只有具体的InputFormat自己知道。它只需要保证getSplits返回的InputSplit和getRecordReader所关心的InputSplit是同样的implement就行了。这就给InputFormat的实现提供了巨大的灵活性。

最常见的FileInputFormat(implements InputFormat)使用FileSplit(implements InputSplit)来描述Split。而FileSplit中有以下描述信息:
  private Path file;      // Split所在的文件
  private long start;     // Split的起始位置
  private long length;    // Split的长度,getLength()会返回它
  private String[] hosts; // Split所在的机器名称,getLocations()会返回它
然后,配套使用的RecordReader将从FileSplit中获取信息,解析文件名为FileSplit.file的文件中从FileSplit.start到FileSplit.start+FileSplit.length之间的内容。
至于具体的划分策略,FileInputFormat默认为文件在HDFS上的每一个Block生成一个对应的FileSplit。那么自然,FileSplit.start就是对应Block在文件中的Offset、FileSplit.length就是对应Block的Length、FileSplit.hosts就是对应Block的Location。
但是可以设置“mapred.min.split.size”参数,使得Split的大小大于一个Block,这时候FileInputFormat会将连续的若干个Block分在一个Split中、也可能会将一个Block分别划在不同的Split中(但是前提是一个Split必须在一个文件中)。Split的Start、Length都好说,都是划分前就定好的。而Split的Location就需要对所有划在其中的Block的Location进行整合,尽量寻找它们共有的Location。而这些Block很可能并没有共同的Location,那么就需要找一个距离这些Block最近的Location作为Split的Location。

还有CombineFileInputFormat(implements InputFormat),它可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目)。虽然说设置“mapred.min.split.size”参数也可以让FileInputFormat做到这一点,但是FileSplit取的是连续的Block,大多数情况下这些Block可能并不会有共同的Location。
CombineFileInputFormat使用CombineFileSplit(implements InputSplit)来描述Split。CombineFileSplit的成员如下:
  private Path[] paths;       // 每个子Split对应一个文件
  private long[] startoffset; // 每个子Split在对应文件中的起始位置
  private long[] lengths;     // 每个子Split的长度
  private String[] locations; // Split所在的机器名称,getLocations()会返回它
  private long totLength;     // 所有子Split长度之和,getLength()会返回它
其中前三个数组一定是长度相等并且一一对应的,描述了每一个子Split的信息。而locations,注意它并没有描述每一个子Split,而描述的是整个Split。这是因为CombineFileInputFormat在打包一组子Split时,会考虑子Split的Location,尽量将在同一个Location(或者临近位置)出现的Split打包在一起,生成一个CombineFileSplit。而打包以后的locations自然就是由所有子Split的Location整合而来。
同样,配套使用的RecordReader将从CombineFileSplit中获取信息,解析每一个文件名为CombineFileSplit.paths的文件中从CombineFileSplit.startoffset到CombineFileSplit.startoffset+CombineFileSplit.lengths之间的内容。
具体到划分策略,CombineFileSplit先将输入文件拆分成若干个子Split,每个子Split对应文件在HDFS的一个Block。然后按照“mapred.max.split.size”配置,将Length之和不超过这个值的拥有共同Location的几个子Split打包起来,得到一个CombineFileSplit。最后可能会剩下一些子Split,它们不满足拥有共同Location这个条件,那么打包它们的时候就需要找一个距离这些子Split最近的Location作为Split的Location。

有时候,可能输入文件是不可以划分的(比如它是一个tar.gz,划分会导致它无法解压),这也是设计InputFormat时需要考虑的。可以重载FileInputFormat的isSplitable()函数来告知文件不可划分,或者干脆就从头实现自己的InputFormat。
由于InputSplit接口是非常灵活的,还可以设计出千奇百怪的划分方式。

接下来就是“Split如何调度”的问题。
前面在划分输入数据的时候,不断提到Location这个东西。InputSplit接口中有getLocations()、InputFormat的implement在生成InputSplit的时候需要关心对应Block的Location,并且当多个Block需要放到一个InputSplit的时候还需要对Location做合并。
那么这个Location到底用来做什么呢?它主要就是用来给Split的调度提供参考。

先简单介绍一下JobTracker是怎样将一个Split所对应的Map任务分派给TaskTracker的。在前面的流程图中,第6步JobTracker会从HDFS获取Job的Split信息,这将生成一系列待处理的Map和Reduce任务。JobTracker并不会主动的为每一个TaskTracker划分一个任务子集,而是直接把所有任务都放在跟Job对应的待处理任务列表中。
TaskTracker定期向JobTracker发送心跳,除了保持活动以外,还会报告TaskTracker当前可以执行的Map和Reduce的剩余配额(TaskTracker总的配额由“mapred.tasktracker.map.tasks.maximun”和“mapred.tasktracker.reduce.tasks.maximun”来配置)。如果JobTracker有待处理的任务,TaskTracker又有相应的配额,则JobTracker会在心跳的应答中给JobTracker分配任务(优先分配Map任务)。
在分配Map任务时,Split的Location信息就要发挥作用了。JobTracker会根据TaskTracker的地址来选择一个Location与之最接近的Split所对应的Map任务(注意一个Split可以有多个Location)。这样一来,输入文件中Block的Location信息经过一系列的整合(by InputFormat)和传递,最终就影响到了Map任务的分配。其结果是Map任务倾向于处理存放在本地的数据,以保证效率。
当然,Location仅仅是JobTracker在分配Map任务时所考虑的因素之一。JobTracker在选择任务之前,需要先选定一个Job(可能正有多个Job等待处理),这取决于具体TaskScheduler的调度策略。然后,JobTracker又会优先选择因为失败而需要重试的任务,而重试任务又尽量不要分配到它曾经执行失败过的机器上。
JobTracker在分配Reduce任务时并不考虑Location,因为大部分情况下,Reduce处理的是所有Map的输出,这些Map遍布在Hadoop集群的每一个角落,考虑Location意义不大。

最后就是“划分后的数据如何读取”的问题。
接下来,在前面的流程图的第10步,TaskTracker就要启动一个新的JVM来执行Map程序了。在Map执行的时候,会使用InputFormat.getRecordReader()所返回的RecordReader对象来读取Split中的每一条记录(getRecordReader函数中会使用InputSplit对RecordReader进行初始化)。
咋一看,RecordReader似乎会使用Split的Location信息来决定数据应该从哪里去读。但是事实并非如此。前面也说过,Split的Location很可能是被InputFormat整合过的,可能并不是Block真正的Location(就算是,也没法保证从InputSplit在JobClient上被生成到现在的这段时间之内,Block没有被移动过)。
说白了,Split的Location其实是InputFormat期望这个Split被处理的Location,它完全可以跟实际Block的Location没有半点关系。InputFormat甚至可以将Split的Location定义为“距离Split所包含的所有Block的Location最远的那个Location”,只不过大多数时候我们肯定是希望Map程序在本地就能读取到输入数据的。

所以说,RecordReader并不关心Split的Location,只管Open它的Path。前面说过,RecordReader是由具体的InputFormat创建并返回的,它跟对应的InputFormat所使用的InputSplit必定是配对的。比如,对应于FileSplit,RecordReader要读取FileSplit.file文件中的相应区间、对应于CombineFileSplit,RecordReader要读取CombineFileSplit.paths中的每个文件的相应区间。

RecordReader对一个Path的Open操作由DFSClient来完成,它会向HDFS的NameNode获取对应文件在对应区间上的Block信息:依次有哪些Block、每个Block各自的Location。而要读写一个Block的时候,DFSClient总是使用NameNode返回的第一个Location,除非读写失败才会依次选择后面的Location。
而NameNode在处理Open请求时(getBlockLocations),在得到一个Block有哪些Location之后,会以DFSClient所在的地址为依据,对这些Location进行排序,距离越小的越排在前。而DFSClient又总是会选择排在前面的Location,所以,最终RecordReader会倾向于读取本地的数据(如果有的话)。

但是,不管Block是不是本地的,DFSClient都会向DataNode建立连接,然后请求数据。并不会因为Block是本地的而直接读磁盘上的文件,因为这些文件都是由DataNode来管理的,需要通过DataNode来找到Block所对应的物理文件、也需要由DataNode来协调对文件的并发读写。所以本地与非本地的差别仅仅在于网络传输上,前者是仅仅在本地网络协议栈上面绕一圈、而后者则是真正的网络通讯。在Block离得不远、且网络比较畅通的情况下,非Local并不意味着太大的开销。
所以Hadoop优先追求Map的Data-local,也就是输入数据存放在本地。如果不能满足,则退而求其次,追求Rack-local,也就是输入数据存放在同一机架的其他机器上,这样的话网络开销对性能影响一般不会太大。而如果这两种情况都不能满足,则网络传输可能会带来较大的开销,Hadoop会尽量去避免。这也就是之前提到的,在属于同一Split的Block没有共同Location的情况下,要计算一下离它们最近的Location的原因。

在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动相应的N个Map程序来分别处理它们。
数据如何划分?Split如何调度(如何决定处理Split的Map程序应该运行在哪台TaskTracker机器上)?划分后的数据又如何读取?这就是本文所要讨论的问题。

先从一张经典的MapReduce工作流程图出发:
技术分享图片 


1、运行mapred程序;
2、本次运行将生成一个Job,于是JobClient向JobTracker申请一个JobID以标识这个Job;
3、JobClient将Job所需要的资源提交到HDFS中一个以JobID命名的目录中。这些资源包括JAR包、配置文件、InputSplit、等;
4、JobClient向JobTracker提交这个Job;
5、JobTracker初始化这个Job;
6、JobTracker从HDFS获取这个Job的Split等信息;
7、JobTracker向TaskTracker分配任务;
8、TaskTracker从HDFS获取这个Job的相关资源;
9、TaskTracker开启一个新的JVM;
10、TaskTracker用新的JVM来执行Map或Reduce;
……
对于之前提到的三个问题,这个流程中的几个点需要展开一下。

首先是“数据如何划分”的问题。
在第3步中,JobClient向HDFS提交的资源就包含了InputSplit,这就是数据划分的结果。也就是说,数据划分是在JobClient上完成的。在这里,JobClient会使用指定的InputFormat将输入数据做一次划分,形成若干个Split。

InputFormat是一个interface。用户在启动MapReduce的时候需要指定一个InputFormat的implement。InputFormat只包含了两个接口函数:
InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;
RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException;
getSplits就是现在要使用的划分函数。job参数是任务的配置集合,从中可以取到用户在启动MapReduce时指定的输入文件路径。而numSplits参数是一个Split数目的建议值,是否考虑这个值,由具体的InputFormat实现来决定。
返回的是InputSplit数组,它描述了所有的Split信息,一个InputSplit描述一个Split。

InputSplit也是一个interface,具体返回什么样的implement,这是由具体的InputFormat来决定的。InputSplit也只有两个接口函数:
long getLength() throws IOException;
String[] getLocations() throws IOException;
这个interface仅仅描述了Split有多长,以及存放这个Split的Location信息(也就是这个Split在HDFS上存放的机器。它可能有多个replication,存在于多台机器上)。除此之外,就再没有任何直接描述Split的信息了。比如:Split对应于哪个文件?在文件中的起始和结束位置是什么?等等重要的特征都没有描述到。
为什么会这样呢?因为关于Split的那些描述信息,对于MapReduce框架来说是不需要关心的。框架只关心Split的长度(主要用于一些统计信息)和Split的Location(主要用于Split的调度,后面会细说)。
而Split中真正重要的描述信息还是只有InputFormat会关心。在需要读取一个Split的时候,其对应的InputSplit会被传递到InputFormat的第二个接口函数getRecordReader,然后被用于初始化一个RecordReader,以解析输入数据。也就是说,描述Split的重要信息都被隐藏了,只有具体的InputFormat自己知道。它只需要保证getSplits返回的InputSplit和getRecordReader所关心的InputSplit是同样的implement就行了。这就给InputFormat的实现提供了巨大的灵活性。

最常见的FileInputFormat(implements InputFormat)使用FileSplit(implements InputSplit)来描述Split。而FileSplit中有以下描述信息:
  private Path file;      // Split所在的文件
  private long start;     // Split的起始位置
  private long length;    // Split的长度,getLength()会返回它
  private String[] hosts; // Split所在的机器名称,getLocations()会返回它
然后,配套使用的RecordReader将从FileSplit中获取信息,解析文件名为FileSplit.file的文件中从FileSplit.start到FileSplit.start+FileSplit.length之间的内容。
至于具体的划分策略,FileInputFormat默认为文件在HDFS上的每一个Block生成一个对应的FileSplit。那么自然,FileSplit.start就是对应Block在文件中的Offset、FileSplit.length就是对应Block的Length、FileSplit.hosts就是对应Block的Location。
但是可以设置“mapred.min.split.size”参数,使得Split的大小大于一个Block,这时候FileInputFormat会将连续的若干个Block分在一个Split中、也可能会将一个Block分别划在不同的Split中(但是前提是一个Split必须在一个文件中)。Split的Start、Length都好说,都是划分前就定好的。而Split的Location就需要对所有划在其中的Block的Location进行整合,尽量寻找它们共有的Location。而这些Block很可能并没有共同的Location,那么就需要找一个距离这些Block最近的Location作为Split的Location。

还有CombineFileInputFormat(implements InputFormat),它可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目)。虽然说设置“mapred.min.split.size”参数也可以让FileInputFormat做到这一点,但是FileSplit取的是连续的Block,大多数情况下这些Block可能并不会有共同的Location。
CombineFileInputFormat使用CombineFileSplit(implements InputSplit)来描述Split。CombineFileSplit的成员如下:
  private Path[] paths;       // 每个子Split对应一个文件
  private long[] startoffset; // 每个子Split在对应文件中的起始位置
  private long[] lengths;     // 每个子Split的长度
  private String[] locations; // Split所在的机器名称,getLocations()会返回它
  private long totLength;     // 所有子Split长度之和,getLength()会返回它
其中前三个数组一定是长度相等并且一一对应的,描述了每一个子Split的信息。而locations,注意它并没有描述每一个子Split,而描述的是整个Split。这是因为CombineFileInputFormat在打包一组子Split时,会考虑子Split的Location,尽量将在同一个Location(或者临近位置)出现的Split打包在一起,生成一个CombineFileSplit。而打包以后的locations自然就是由所有子Split的Location整合而来。
同样,配套使用的RecordReader将从CombineFileSplit中获取信息,解析每一个文件名为CombineFileSplit.paths的文件中从CombineFileSplit.startoffset到CombineFileSplit.startoffset+CombineFileSplit.lengths之间的内容。
具体到划分策略,CombineFileSplit先将输入文件拆分成若干个子Split,每个子Split对应文件在HDFS的一个Block。然后按照“mapred.max.split.size”配置,将Length之和不超过这个值的拥有共同Location的几个子Split打包起来,得到一个CombineFileSplit。最后可能会剩下一些子Split,它们不满足拥有共同Location这个条件,那么打包它们的时候就需要找一个距离这些子Split最近的Location作为Split的Location。

有时候,可能输入文件是不可以划分的(比如它是一个tar.gz,划分会导致它无法解压),这也是设计InputFormat时需要考虑的。可以重载FileInputFormat的isSplitable()函数来告知文件不可划分,或者干脆就从头实现自己的InputFormat。
由于InputSplit接口是非常灵活的,还可以设计出千奇百怪的划分方式。

接下来就是“Split如何调度”的问题。
前面在划分输入数据的时候,不断提到Location这个东西。InputSplit接口中有getLocations()、InputFormat的implement在生成InputSplit的时候需要关心对应Block的Location,并且当多个Block需要放到一个InputSplit的时候还需要对Location做合并。
那么这个Location到底用来做什么呢?它主要就是用来给Split的调度提供参考。

先简单介绍一下JobTracker是怎样将一个Split所对应的Map任务分派给TaskTracker的。在前面的流程图中,第6步JobTracker会从HDFS获取Job的Split信息,这将生成一系列待处理的Map和Reduce任务。JobTracker并不会主动的为每一个TaskTracker划分一个任务子集,而是直接把所有任务都放在跟Job对应的待处理任务列表中。
TaskTracker定期向JobTracker发送心跳,除了保持活动以外,还会报告TaskTracker当前可以执行的Map和Reduce的剩余配额(TaskTracker总的配额由“mapred.tasktracker.map.tasks.maximun”和“mapred.tasktracker.reduce.tasks.maximun”来配置)。如果JobTracker有待处理的任务,TaskTracker又有相应的配额,则JobTracker会在心跳的应答中给JobTracker分配任务(优先分配Map任务)。
在分配Map任务时,Split的Location信息就要发挥作用了。JobTracker会根据TaskTracker的地址来选择一个Location与之最接近的Split所对应的Map任务(注意一个Split可以有多个Location)。这样一来,输入文件中Block的Location信息经过一系列的整合(by InputFormat)和传递,最终就影响到了Map任务的分配。其结果是Map任务倾向于处理存放在本地的数据,以保证效率。
当然,Location仅仅是JobTracker在分配Map任务时所考虑的因素之一。JobTracker在选择任务之前,需要先选定一个Job(可能正有多个Job等待处理),这取决于具体TaskScheduler的调度策略。然后,JobTracker又会优先选择因为失败而需要重试的任务,而重试任务又尽量不要分配到它曾经执行失败过的机器上。
JobTracker在分配Reduce任务时并不考虑Location,因为大部分情况下,Reduce处理的是所有Map的输出,这些Map遍布在Hadoop集群的每一个角落,考虑Location意义不大。

最后就是“划分后的数据如何读取”的问题。
接下来,在前面的流程图的第10步,TaskTracker就要启动一个新的JVM来执行Map程序了。在Map执行的时候,会使用InputFormat.getRecordReader()所返回的RecordReader对象来读取Split中的每一条记录(getRecordReader函数中会使用InputSplit对RecordReader进行初始化)。
咋一看,RecordReader似乎会使用Split的Location信息来决定数据应该从哪里去读。但是事实并非如此。前面也说过,Split的Location很可能是被InputFormat整合过的,可能并不是Block真正的Location(就算是,也没法保证从InputSplit在JobClient上被生成到现在的这段时间之内,Block没有被移动过)。
说白了,Split的Location其实是InputFormat期望这个Split被处理的Location,它完全可以跟实际Block的Location没有半点关系。InputFormat甚至可以将Split的Location定义为“距离Split所包含的所有Block的Location最远的那个Location”,只不过大多数时候我们肯定是希望Map程序在本地就能读取到输入数据的。

所以说,RecordReader并不关心Split的Location,只管Open它的Path。前面说过,RecordReader是由具体的InputFormat创建并返回的,它跟对应的InputFormat所使用的InputSplit必定是配对的。比如,对应于FileSplit,RecordReader要读取FileSplit.file文件中的相应区间、对应于CombineFileSplit,RecordReader要读取CombineFileSplit.paths中的每个文件的相应区间。

RecordReader对一个Path的Open操作由DFSClient来完成,它会向HDFS的NameNode获取对应文件在对应区间上的Block信息:依次有哪些Block、每个Block各自的Location。而要读写一个Block的时候,DFSClient总是使用NameNode返回的第一个Location,除非读写失败才会依次选择后面的Location。
而NameNode在处理Open请求时(getBlockLocations),在得到一个Block有哪些Location之后,会以DFSClient所在的地址为依据,对这些Location进行排序,距离越小的越排在前。而DFSClient又总是会选择排在前面的Location,所以,最终RecordReader会倾向于读取本地的数据(如果有的话)。

但是,不管Block是不是本地的,DFSClient都会向DataNode建立连接,然后请求数据。并不会因为Block是本地的而直接读磁盘上的文件,因为这些文件都是由DataNode来管理的,需要通过DataNode来找到Block所对应的物理文件、也需要由DataNode来协调对文件的并发读写。所以本地与非本地的差别仅仅在于网络传输上,前者是仅仅在本地网络协议栈上面绕一圈、而后者则是真正的网络通讯。在Block离得不远、且网络比较畅通的情况下,非Local并不意味着太大的开销。
所以Hadoop优先追求Map的Data-local,也就是输入数据存放在本地。如果不能满足,则退而求其次,追求Rack-local,也就是输入数据存放在同一机架的其他机器上,这样的话网络开销对性能影响一般不会太大。而如果这两种情况都不能满足,则网络传输可能会带来较大的开销,Hadoop会尽量去避免。这也就是之前提到的,在属于同一Split的Block没有共同Location的情况下,要计算一下离它们最近的Location的原因。


































































































































































以上是关于InputFormat的数据划分Split调度数据读取的主要内容,如果未能解决你的问题,请参考以下文章

MapReduce的输入格式

2017.5.9 MapReduce内部逻辑

sklearn之数据划分

图文详解大数据分布式文件系统HDFS—切片划分

Hadoop_FileInputFormat分片

R语言plotly可视化:使用plotly可视化数据划分后的训练集和测试集使用不同的形状标签表征训练集测试集以及数据集的分类标签(Display training and test split