红黑树

Posted ZDF0414

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了红黑树相关的知识,希望对你有一定的参考价值。

红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡

红黑树是满足下面红黑性质的二叉搜索树:

(1)每个节点,不是红色就是黑色的

(2)根节点是黑色的

(3)如果一个节点是红色的,则它的两个子节点是黑色的(没有连续的红节点)

(4)对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。(每条路径的黑色节点 的数量相等

红黑树保证最长路径不超过最短路径的两倍,解释:

根据性质的第三点与第四点得:红结点出现最多的情况是间隔出现,所以一条路径上黑结点最少出现一半,为了满足第四点性质,所以最长路径不超过最短路径的两倍

所以为了保证红黑树的性质,当插入节点时,需要考虑颜色是否要调整。


当插入一个结点时,总体可分为三种情况:

ps:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

(1)cur为红,p为红,g为黑,u存在且为红 则将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

(2)cur为红,p为红,g为黑,u不存在/u为黑 p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转 p、g变色--p变黑,g变红

(3)cur为红,p为红,g为黑,u不存在/u为黑 p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转 则转换成了情况2

红黑树的数据插入操作:

#pragma once
#include<iostream>
using namespace std;
enum Color

	RED,
	BLACK,
;
template<class K, class V>
struct BSTreeNode

	BSTreeNode<K, V>* _parent;
	BSTreeNode<K, V>* _left;
	BSTreeNode<K, V>* _right;
	K _key;
	V _value;
	Color _color;
	BSTreeNode<K, V>(const K& key, const V& value)
		: _parent(NULL)
		, _left(NULL)
		, _right(NULL)
		, _key(key)
		, _value(value)
		, _color(RED)
	
;

template<class K, class V>
class RBTree

	typedef BSTreeNode<K, V> Node;
public:
	RBTree()
		:_root(NULL)
	
	bool Insert(const K& key, const V& value)
	
		if (_root == NULL)
		
			_root = new Node(key, value);
			_root->_color = BLACK;//根结点必须为黑色
			return true;
		
		Node* cur = _root;
		Node* parent = NULL;

		//1.找到结点的插入位置
		while (cur)
		
			if (cur->_key < key)
			
				parent = cur;
				cur = cur->_right;
			
			else if (cur->_key > key)
			
				parent = cur;
				cur = cur->_left;
			
			else
				return false;
		
		cur = new Node(key, value);
		if (parent->_key < key)
			parent->_right = cur;
		else
			parent->_left = cur;
		cur->_parent = parent;
		//2、开始调整颜色
		while (cur != _root&&parent->_color == RED)
		
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			
				Node* uncle = grandfather->_right;
				/*uncle 存在且为红色,调整方法:父与叔调黑,祖父调红。完成后,
				再依次向上继续调整*/
				if (uncle&&uncle->_color == RED)
				
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;
					cur = grandfather;
					parent = cur->_parent;
				
				else//不存在或为黑色
				
					if (cur == parent->_right)
					
						RorateL(parent);
						swap(cur, parent);
					
					RorateR(grandfather);
					parent->_color = BLACK;
					grandfather->_color = RED;
					break;
				
			
			else//grandfather->_right == parent
			
				Node* uncle = grandfather->_left;
				/*uncle 存在且为红色,调整方法:父与叔调黑,祖父调红。完成后,
				再依次向上继续调整*/
				if (uncle&&uncle->_color == RED)
				
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;
					cur = grandfather;
					parent = cur->_parent;
				
				else//不存在或为黑色
				
					if (cur == parent->_left)
					
						RorateR(parent);
						swap(cur, parent);
					
					RorateL(grandfather);
					parent->_color = BLACK;
					grandfather->_color = RED;
					break;
				
			
		
		_root->_color = BLACK;
		return true;
	
	bool IsBlance()
	
		if (_root == NULL)
			return true;
		if (_root->_color == RED)
			return false;
		int BlackNum = 0;//一条路径上黑色结点的数目,与其他路径上黑色结点的数目进行比较
		int count = 0;

		//以最左边的路径上黑色结点的数目作为判断依据(每条路径上的黑色结点数目相等)
		Node* cur = _root;
		while (cur)
		
			if (cur->_color == BLACK)
				BlackNum++;
			cur = cur->_left;
		
		return _isBlance(_root, BlackNum,count);
	
protected:
	bool _isBlance(Node*root, int BlackNum,int count)
	
		if (root == NULL)
			return true;
		if (root->_color == RED)
		
			Node*parent = root->_parent;
			//不能有连续的红色结点
			if (parent->_color == RED)
				return false;
		
		else
			count++;
		//判断一条路径是否已经走到叶子结点
		if (root->_left == NULL&&root->_right == NULL)
		
			if (count == BlackNum)
				return true;
			else
				return false;
		
		return _isBlance(root->_left, BlackNum, count)\\
			&&_isBlance(root->_right, BlackNum, count);
	
	void RorateR(Node*parent)
	
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node*ppNode = parent->_parent;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (ppNode == NULL)
		
			_root = subL;
			subL->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
				ppNode->_left = subL;
			else
				ppNode->_right = subL;
			subL->_parent = ppNode;
		
	
	void RorateL(Node*parent)
	
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppNode = parent->_parent;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == NULL)
		
			_root = subR;
			subR->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
				ppNode->_left = subR;
			else
				ppNode->_right = subR;
			subR->_parent = ppNode;
		
	
private:
	Node*_root;
;






以上是关于红黑树的主要内容,如果未能解决你的问题,请参考以下文章

红黑树原理

红黑树原理

红黑树

红黑树

漫画算法:什么是红黑树?

Java集合源码分析之基础:红黑树(RB Tree)