FWT模板
Posted rubbishes
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FWT模板相关的知识,希望对你有一定的参考价值。
FWT 是求多项式位元算卷积的一种高效方法
最常见的有 or、and、xor 这三种操作
void FWT(LL f[], int n, int op) { int mx = 0; while((1LL<<mx) < n) mx++; for (int i = 1; i <= mx; ++i) { int m = (1 << i), len = m >> 1; for (int r = 0; r < n; r += m) { int t1 = r, t2 = r + len; for (int j = 0; j < len; ++j, ++t1, ++t2) { LL x1 = f[t1], x2 = f[t2]; if (op == 1) { //xor f[t1] = x1 + x2; f[t2] = x1 - x2; //if(f[t1] >= mod) f[t1] -= mod; //if(f[t2] < 0) f[t2] += mod; } if (op == 2) { //and f[t1] = x1 + x2; f[t2] = x2; //if(f[t1] >= mod) f[t1] -= mod; } if (op == 3) { //or f[t1] = x1; f[t2] = x2 + x1; //if(f[t2] >= mod) f[t2] -= mod; } } } } } void IFWT(LL f[], int n, int op) { int mx = 0; while((1LL<<mx) < n) mx++; for (int i = mx; i >= 1; --i) { int m = (1 << i), len = m >> 1; for (int r = 0; r < n; r += m) { int t1 = r, t2 = r + len; for (int j = 0; j < len; ++j, ++t1, ++t2) { LL x1 = f[t1], x2 = f[t2]; if (op == 1) { //xor f[t1] = (x1 + x2) / 2; f[t2] = (x1 - x2) / 2; //f[t1] = (x1 + x2) * inv2; //f[t2] = (x1 - x2) * inv2; //if(f[t1] >= mod) f[t1] %= mod; //if(f[t2] >= mod) f[t2] %= mod; //if(f[t2] < 0) f[t2] = f[t2] % mod + mod; } if (op == 2) { //and f[t1] = x1 - x2; f[t2] = x2; //if(f[t1] < 0) f[t1] += mod; } if (op == 3) { //or f[t1] = x1; f[t2] = x2 - x1; //if(f[t2] < 0) f[t2] += mod; } } } } }
以上是关于FWT模板的主要内容,如果未能解决你的问题,请参考以下文章