机器学习-一对多(多分类)代码实现(matlab)

Posted liu-wang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习-一对多(多分类)代码实现(matlab)相关的知识,希望对你有一定的参考价值。

%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions 
%  in this exericse:
%
%     lrCostFunction.m (logistic regression cost function)
%     oneVsAll.m
%     predictOneVsAll.m
%     predict.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% Setup the parameters you will use for this part of the exercise
input_layer_size  = 400;  % 20x20 Input Images of Digits
num_labels = 10;          % 10 labels, from 1 to 10   
                          % (note that we have mapped "0" to label 10)

%% =========== Part 1: Loading and Visualizing Data =============
%  We start the exercise by first loading and visualizing the dataset. 
%  You will be working with a dataset that contains handwritten digits.
%

% Load Training Data
fprintf(‘Loading and Visualizing Data ...
‘)

load(‘ex3data1.mat‘); % training data stored in arrays X, y
m = size(X, 1);
技术分享图片
size(X, 1);

X=5000*400

size(X, 1) = 5000 取行

size(X,2) = 400 取列
 
解释

 

% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);

displayData(sel);

fprintf(‘Program paused. Press enter to continue.
‘);
pause;

%% ============ Part 2: Vectorize Logistic Regression ============
%  In this part of the exercise, you will reuse your logistic regression
%  code from the last exercise. You task here is to make sure that your
%  regularized logistic regression implementation is vectorized. After
%  that, you will implement one-vs-all classification for the handwritten
%  digit dataset.
%

fprintf(‘
Training One-vs-All Logistic Regression...
‘)

lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);

fprintf(‘Program paused. Press enter to continue.
‘);
pause;


%% ================ Part 3: Predict for One-Vs-All ================
%  After ...
pred = predictOneVsAll(all_theta, X);

fprintf(‘
Training Set Accuracy: %f
‘, mean(double(pred == y)) * 100);

  

以上是关于机器学习-一对多(多分类)代码实现(matlab)的主要内容,如果未能解决你的问题,请参考以下文章

Matlab基于人工神经网络ANN实现多分类预测(Excel可直接替换数据)

Matlab基于人工神经网络ANN实现多分类预测(Excel可直接替换数据)

Matlab基于决策树算法实现多分类预测(源码可直接替换数据)

Matlab基于决策树算法实现多分类预测(源码可直接替换数据)

Matlab基于k近邻算法实现多分类预测(源码可直接替换数据)

Matlab基于k近邻算法实现多分类预测(源码可直接替换数据)