Numpy基本操作
Posted dominic-ji
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Numpy基本操作相关的知识,希望对你有一定的参考价值。
NumPy:数组计算
NumPy是高性能科学计算和数据分析的基础包。它是Pandas等其他各种工具的基础
NumPy的主要功能:
ndarray,一个多维数据结构,高校且节省空间
无需循环即可对整组数据进行快速运算的数学函数
读写磁盘数据的工具以及用于操作内存映射文件的工具
线性代数、随机数生成和傅里叶变化功能
用于集成C、C++等代码的工具
安装方法:pip install numpy(如果显示命令不存在可以尝试python -m install numpy)
引用方式通常喜欢给numpy模块别名:import numpy as np
NumPy简单使用
例1:已知若干家跨国公司的市值(美元),将其换算为人民币
例2:已知购物车中每件商品的价格与商品件数,求总金额
创建ndarray:np.array()
ndarray是多维数组结构,与列表的区别是:
数组对象内的元素类型必须相同
数组大小不可修改
常用属性
T 数组的转置(对二维及以上数组而言)
dtype 数组元素的数据类型
size 数组元素的个数
ndim 数组的维数
shape 数组的维度大小(以元祖的形式)
ndarray创建
arange() 比我们的python3里面的range更加强大,支持浮点数范围
linspance() 类似于arange(),第三个参数为数组长度
zeros() 根据指定形状和dtype创建全0数组
ones() 根据指定形状和dtype创建全1数组
empty() 根据指定形状和dtype创建空数组(随机值)
eye() 根据指定边长和dtype创建单位矩阵
NumPy索引切片
数组和标量(数字)之间的运算
a+1 a*3 1//a a**0.5
同样大小数组之间的运算
a+b a/b a**b
数组的索引
一维数组:a[5]
多维数组:
列表式写法:a[2][3]
新式写法:a[2,3] (推荐) 逗号隔开,前面作用于行后面作用于列
数组的切片
一维数组:a[5:8] a[4:] a[2:10] = 1
多维数组:a[1:2, 3:4] a[:,3:5] a[:,1]
与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组(因为不会复制一份出去而是沿用原来的内存空间中的值)。 【解决方法:copy()】
NumPy布尔型索引
问题:给一个数组,选出数组中所有大于5的数。
答案:a[a>5]
原理: a>5会对a中的每一个元素进行判断,返回一个布尔数组 布尔型索引:将同样大小的布尔数组传进索引,会返回一个由所有True对应位置的元素的数组
问题2:给一个数组,选出数组中所有大于5的偶数。
问题3:给一个数组,选出数组中所有大于5的数和偶数。
答案:
a[(a>5) & (a%2==0)]
a[(a>5) | (a%2==0)]
NumPy花式索引
问题1:对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组。
答案:a[[1,3,4,6,7]]
问题2:对一个二维数组,选出其第一列和第三列,组成新的二维数组。
答案:a[:,[1,3]]
必会知识点
浮点数特殊值
浮点数:float
浮点数有两个特殊值:
nan(Not a Number):不等于任何浮点数(nan != nan)
inf(infinity):比任何浮点数都大
NumPy中创建特殊值:np.nan np.inf
在数据分析中,nan常被用作表示数据缺失值
sum 求和
cumsum 求前缀和(截至当前元素及其前面所有的元素和)
mean 求平均数
std 求标准差
var 求方差
min 求最小值
max 求最大值
argmin 求最小值索引
argmax 求最大值索引
总结
数组中的数据类型必须一致,并且数组大小不可再被更改‘
对于数组求相应值由四种不同的方式:
正常的索引切片取值
行列分开的切片取值
布尔型(生成一个与原数组各元素一一对应的布尔值数组,原数组与该布尔值列表一一对应,值为True的放行~~~)
以上是关于Numpy基本操作的主要内容,如果未能解决你的问题,请参考以下文章