B1045 糖果传递 数学

Posted dukelv

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了B1045 糖果传递 数学相关的知识,希望对你有一定的参考价值。

糖果传递,一开始就想到了n^2的模拟贪心算法,但是一看,数据范围太大,好像只有O(N)能过。。。没啥方法,只好看题解,之后发现,woc,还有这种操作?

这个题直接可以用数学证明。。。

证明如下:

首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave  ->  X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave  ->  X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave  ->  X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
  我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。

偷来的证明。。。

题目:

Description

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。
Input
第一行一个正整数nn<=1000000,表示小朋友的个数.
接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数.
Output

求使所有人获得均等糖果的最小代价。
Sample Input
4

1

2

5

4
Sample Output
4

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = 1 << 30;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
    char c;
    bool op = 0;
    while(c = getchar(), c < 0 || c > 9)
        if(c == -) op = 1;
    x = c - 0;
    while(c = getchar(), c >= 0 && c <= 9)
        x = x * 10 + c - 0;
    if(op) x = -x;
}
template <class T>
void write(T x)
{
    if(x < 0) putchar(-), x = -x;
    if(x >= 10) write(x / 10);
    putchar(0 + x % 10);
}
ll c[1000010],tot = 0,n,p[1000010];
ll ans = 0;
int main()
{
    read(n);
    duke(i,1,n)
    {
        read(p[i]);
        tot += p[i];
    }
    tot /= n;
    duke(i,2,n)
    {
        c[i] = c[i - 1] + p[i] - tot;
    }
    ll x;
    sort(c + 1,c + n + 1);
    x = c[n / 2 + 1];
    duke(i,1,n)
    {
        ans += (ll)(abs(x - c[i]));
    }
    printf("%lld
",ans);
    return 0;
}
/*
4
1
2
5
4
*/

 

以上是关于B1045 糖果传递 数学的主要内容,如果未能解决你的问题,请参考以下文章

P2512 [HAOI2008]糖果传递 题解 数学

[BZOJ1045][HAOI2008]糖果传递 数学

P2512 [HAOI2008]糖果传递 & P4016 负载平衡问题

HDU 1034(传递糖果 模拟)

bzoj 1045 [HAOI2008] 糖果传递 排序

bzoj 1045 [HAOI2008] 糖果传递 —— 贪心