B1045 糖果传递 数学
Posted dukelv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了B1045 糖果传递 数学相关的知识,希望对你有一定的参考价值。
糖果传递,一开始就想到了n^2的模拟贪心算法,但是一看,数据范围太大,好像只有O(N)能过。。。没啥方法,只好看题解,之后发现,woc,还有这种操作?
这个题直接可以用数学证明。。。
证明如下:
首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。 对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。 同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。 尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。 对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似) 对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2 对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3 …… 对于第n个小朋友,An-Xn+X1=ave。 我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。
偷来的证明。。。
题目:
Description 有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。 Input 第一行一个正整数nn<=1‘000‘000,表示小朋友的个数. 接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数. Output 求使所有人获得均等糖果的最小代价。 Sample Input 4 1 2 5 4 Sample Output 4
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> using namespace std; #define duke(i,a,n) for(int i = a;i <= n;i++) #define lv(i,a,n) for(int i = a;i >= n;i--) #define clean(a) memset(a,0,sizeof(a)) const int INF = 1 << 30; typedef long long ll; typedef double db; template <class T> void read(T &x) { char c; bool op = 0; while(c = getchar(), c < ‘0‘ || c > ‘9‘) if(c == ‘-‘) op = 1; x = c - ‘0‘; while(c = getchar(), c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘; if(op) x = -x; } template <class T> void write(T x) { if(x < 0) putchar(‘-‘), x = -x; if(x >= 10) write(x / 10); putchar(‘0‘ + x % 10); } ll c[1000010],tot = 0,n,p[1000010]; ll ans = 0; int main() { read(n); duke(i,1,n) { read(p[i]); tot += p[i]; } tot /= n; duke(i,2,n) { c[i] = c[i - 1] + p[i] - tot; } ll x; sort(c + 1,c + n + 1); x = c[n / 2 + 1]; duke(i,1,n) { ans += (ll)(abs(x - c[i])); } printf("%lld ",ans); return 0; } /* 4 1 2 5 4 */
以上是关于B1045 糖果传递 数学的主要内容,如果未能解决你的问题,请参考以下文章