一 前言
元类属于python面向对象编程的深层魔法,99%的人都不得要领,一些自以为搞明白元类的人其实也只是自圆其说、点到为止,从对元类的控制上来看就破绽百出、逻辑混乱,今天我就来带大家来深度了解python元类的来龙去脉。
笔者深入浅出的背后是对技术一日复一日的执念,希望可以大家可以尊重原创,为大家能因此文而解开对元类所有的疑惑而感到开心!!!
二 什么是元类
一切源自于一句话:python中一切皆为对象。让我们先定义一个类,然后逐步分析
class OldboyTeacher(object): school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name)
所有的对象都是实例化或者说调用类而得到的(调用类的过程称为类的实例化),比如对象t1是调用类OldboyTeacher得到的
t1=OldboyTeacher(‘egon‘,18) print(type(t1)) #查看对象t1的类是<class ‘__main__.OldboyTeacher‘>
如果一切皆为对象,那么类OldboyTeacher本质也是一个对象,既然所有的对象都是调用类得到的,那么OldboyTeacher必然也是调用了一个类得到的,这个类称为元类
于是我们可以推导出===>产生OldboyTeacher的过程一定发生了:OldboyTeacher=元类(...)
print(type(OldboyTeacher)) # 结果为<class ‘type‘>,证明是调用了type这个元类而产生的OldboyTeacher,即默认的元类为type
三 class关键字创建类的流程分析
上文我们基于python中一切皆为对象的概念分析出:我们用class关键字定义的类本身也是一个对象,负责产生该对象的类称之为元类(元类可以简称为类的类),内置的元类为type
class关键字在帮我们创建类时,必然帮我们调用了元类OldboyTeacher=type(...),那调用type时传入的参数是什么呢?必然是类的关键组成部分,一个类有三大组成部分,分别是
1、类名class_name=‘OldboyTeacher‘
2、基类们class_bases=(object,)
3、类的名称空间class_dic,类的名称空间是执行类体代码而得到的
调用type时会依次传入以上三个参数
综上,class关键字帮我们创建一个类应该细分为以下四个过程
#exec:三个参数 #参数一:包含一系列python代码的字符串 #参数二:全局作用域(字典形式),如果不指定,默认为globals() #参数三:局部作用域(字典形式),如果不指定,默认为locals() #可以把exec命令的执行当成是一个函数的执行,会将执行期间产生的名字存放于局部名称空间中 g={ ‘x‘:1, ‘y‘:2 } l={} exec(‘‘‘ global x,z x=100 z=200 m=300 ‘‘‘,g,l) print(g) #{‘x‘: 100, ‘y‘: 2,‘z‘:200,......} print(l) #{‘m‘: 300}
五 自定义元类控制类OldboyTeacher的创建
一个类没有声明自己的元类,默认他的元类就是type,除了使用内置元类type,我们也可以通过继承type来自定义元类,然后使用metaclass关键字参数为一个类指定元类
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 pass class OldboyTeacher(object,metaclass=Mymeta): # OldboyTeacher=Mymeta(‘OldboyTeacher‘,(object),{...}) school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name)
自定义元类可以控制类的产生过程,类的产生过程其实就是元类的调用过程,即OldboyTeacher=Mymeta(‘OldboyTeacher‘,(object),{...}),调用Mymeta会先产生一个空对象OldoyTeacher,然后连同调用Mymeta括号内的参数一同传给Mymeta下的__init__方法,完成初始化,于是我们可以
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 def __init__(self,class_name,class_bases,class_dic): # print(self) #<class ‘__main__.OldboyTeacher‘> # print(class_bases) #(<class ‘object‘>,) # print(class_dic) #{‘__module__‘: ‘__main__‘, ‘__qualname__‘: ‘OldboyTeacher‘, ‘school‘: ‘oldboy‘, ‘__init__‘: <function OldboyTeacher.__init__ at 0x102b95ae8>, ‘say‘: <function OldboyTeacher.say at 0x10621c6a8>} super(Mymeta, self).__init__(class_name, class_bases, class_dic) # 重用父类的功能 if class_name.islower(): raise TypeError(‘类名%s请修改为驼峰体‘ %class_name) if ‘__doc__‘ not in class_dic or len(class_dic[‘__doc__‘].strip(‘ ‘)) == 0: raise TypeError(‘类中必须有文档注释,并且文档注释不能为空‘) class OldboyTeacher(object,metaclass=Mymeta): # OldboyTeacher=Mymeta(‘OldboyTeacher‘,(object),{...}) """ 类OldboyTeacher的文档注释 """ school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name)
六 自定义元类控制类OldboyTeacher的调用
储备知识:__call__
class Foo: def __call__(self, *args, **kwargs): print(self) print(args) print(kwargs) obj=Foo() #1、要想让obj这个对象变成一个可调用的对象,需要在该对象的类中定义一个方法__call__方法,该方法会在调用对象时自动触发 #2、调用obj的返回值就是__call__方法的返回值 res=obj(1,2,3,x=1,y=2)
由上例得知,调用一个对象,就是触发对象所在类中的__call__方法的执行,如果把OldboyTeacher也当做一个对象,那么在OldboyTeacher这个对象的类中也必然存在一个__call__方法
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 def __call__(self, *args, **kwargs): print(self) #<class ‘__main__.OldboyTeacher‘> print(args) #(‘egon‘, 18) print(kwargs) #{} return 123 class OldboyTeacher(object,metaclass=Mymeta): school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) # 调用OldboyTeacher就是在调用OldboyTeacher类中的__call__方法 # 然后将OldboyTeacher传给self,溢出的位置参数传给*,溢出的关键字参数传给** # 调用OldboyTeacher的返回值就是调用__call__的返回值 t1=OldboyTeacher(‘egon‘,18) print(t1) #123
默认地,调用t1=OldboyTeacher(‘egon‘,18)会做三件事
1、产生一个空对象obj
2、调用__init__方法初始化对象obj
3、返回初始化好的obj
对应着,OldboyTeacher类中的__call__方法也应该做这三件事
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 def __call__(self, *args, **kwargs): #self=<class ‘__main__.OldboyTeacher‘> #1、调用__new__产生一个空对象obj obj=self.__new__(self) # 此处的self是类OldoyTeacher,必须传参,代表创建一个OldboyTeacher的对象obj #2、调用__init__初始化空对象obj self.__init__(obj,*args,**kwargs) #3、返回初始化好的对象obj return obj class OldboyTeacher(object,metaclass=Mymeta): school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) t1=OldboyTeacher(‘egon‘,18) print(t1.__dict__) #{‘name‘: ‘egon‘, ‘age‘: 18}
上例的__call__相当于一个模板,我们可以在该基础上改写__call__的逻辑从而控制调用OldboyTeacher的过程,比如将OldboyTeacher的对象的所有属性都变成私有的
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 def __call__(self, *args, **kwargs): #self=<class ‘__main__.OldboyTeacher‘> #1、调用__new__产生一个空对象obj obj=self.__new__(self) # 此处的self是类OldoyTeacher,必须传参,代表创建一个OldboyTeacher的对象obj #2、调用__init__初始化空对象obj self.__init__(obj,*args,**kwargs) # 在初始化之后,obj.__dict__里就有值了 obj.__dict__={‘_%s__%s‘ %(self.__name__,k):v for k,v in obj.__dict__.items()} #3、返回初始化好的对象obj return obj class OldboyTeacher(object,metaclass=Mymeta): school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) t1=OldboyTeacher(‘egon‘,18) print(t1.__dict__) #{‘_OldboyTeacher__name‘: ‘egon‘, ‘_OldboyTeacher__age‘: 18}
上例中涉及到查找属性的问题,比如self.__new__,请看下一小节
六 再看属性查找
结合python继承的实现原理+元类重新看属性的查找应该是什么样子呢???
在学习完元类后,其实我们用class自定义的类也全都是对象(包括object类本身也是元类type的 一个实例,可以用type(object)查看),我们学习过继承的实现原理,如果把类当成对象去看,将下述继承应该说成是:对象OldboyTeacher继承对象Foo,对象Foo继承对象Bar,对象Bar继承对象object
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 n=444 def __call__(self, *args, **kwargs): #self=<class ‘__main__.OldboyTeacher‘> obj=self.__new__(self) self.__init__(obj,*args,**kwargs) return obj class Bar(object): n=333 class Foo(Bar): n=222 class OldboyTeacher(Foo,metaclass=Mymeta): n=111 school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) print(OldboyTeacher.n) #自下而上依次注释各个类中的n=xxx,然后重新运行程序,发现n的查找顺序为OldboyTeacher->Foo->Bar->object->Mymeta->type
于是属性查找应该分成两层,一层是对象层(基于c3算法的MRO)的查找,另外一个层则是类层(即元类层)的查找
#查找顺序: #1、先对象层:OldoyTeacher->Foo->Bar->object #2、然后元类层:Mymeta->type
依据上述总结,我们来分析下元类Mymeta中__call__里的self.__new__的查找
class Mymeta(type): n=444 def __call__(self, *args, **kwargs): #self=<class ‘__main__.OldboyTeacher‘> obj=self.__new__(self) print(self.__new__ is object.__new__) #True class Bar(object): n=333 # def __new__(cls, *args, **kwargs): # print(‘Bar.__new__‘) class Foo(Bar): n=222 # def __new__(cls, *args, **kwargs): # print(‘Foo.__new__‘) class OldboyTeacher(Foo,metaclass=Mymeta): n=111 school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) # def __new__(cls, *args, **kwargs): # print(‘OldboyTeacher.__new__‘) OldboyTeacher(‘egon‘,18) #触发OldboyTeacher的类中的__call__方法的执行,进而执行self.__new__开始查找
总结,Mymeta下的__call__里的self.__new__在OldboyTeacher、Foo、Bar里都没有找到__new__的情况下,会去找object里的__new__,而object下默认就有一个__new__,所以即便是之前的类均未实现__new__,也一定会在object中找到一个,根本不会、也根本没必要再去找元类Mymeta->type中查找__new__
我们在元类的__call__中也可以用object.__new__(self)去造对象
但我们还是推荐在__call__中使用self.__new__(self)去创造空对象,因为这种方式会检索三个类OldboyTeacher->Foo->Bar,而object.__new__则是直接跨过了他们三个
最后说明一点
class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类 n=444 def __new__(cls, *args, **kwargs): obj=type.__new__(cls,*args,**kwargs) # 必须按照这种传值方式 print(obj.__dict__) # return obj # 只有在返回值是type的对象时,才会触发下面的__init__ return 123 def __init__(self,class_name,class_bases,class_dic): print(‘run。。。‘) class OldboyTeacher(object,metaclass=Mymeta): #OldboyTeacher=Mymeta(‘OldboyTeacher‘,(object),{...}) n=111 school=‘oldboy‘ def __init__(self,name,age): self.name=name self.age=age def say(self): print(‘%s says welcome to the oldboy to learn Python‘ %self.name) print(type(Mymeta)) #<class ‘type‘> # 产生类OldboyTeacher的过程就是在调用Mymeta,而Mymeta也是type类的一个对象,那么Mymeta之所以可以调用,一定是在元类type中有一个__call__方法 # 该方法中同样需要做至少三件事: # class type: # def __call__(self, *args, **kwargs): #self=<class ‘__main__.Mymeta‘> # obj=self.__new__(self,*args,**kwargs) # 产生Mymeta的一个对象 # self.__init__(obj,*args,**kwargs) # return obj
七 练习题
练习一:在元类中控制把自定义类的数据属性都变成大写
class Mymetaclass(type): def __new__(cls,name,bases,attrs): update_attrs={} for k,v in attrs.items(): if not callable(v) and not k.startswith(‘__‘): update_attrs[k.upper()]=v else: update_attrs[k]=v return type.__new__(cls,name,bases,update_attrs) class Chinese(metaclass=Mymetaclass): country=‘China‘ tag=‘Legend of the Dragon‘ #龙的传人 def walk(self): print(‘%s is walking‘ %self.name) print(Chinese.__dict__) ‘‘‘ {‘__module__‘: ‘__main__‘, ‘COUNTRY‘: ‘China‘, ‘TAG‘: ‘Legend of the Dragon‘, ‘walk‘: <function Chinese.walk at 0x0000000001E7B950>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Chinese‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Chinese‘ objects>, ‘__doc__‘: None} ‘‘‘
练习二:在元类中控制自定义的类无需__init__方法
1.元类帮其完成创建对象,以及初始化操作;
2.要求实例化时传参必须为关键字形式,否则抛出异常TypeError: must use keyword argument
3.key作为用户自定义类产生对象的属性,且所有属性变成大写
class Mymetaclass(type): # def __new__(cls,name,bases,attrs): # update_attrs={} # for k,v in attrs.items(): # if not callable(v) and not k.startswith(‘__‘): # update_attrs[k.upper()]=v # else: # update_attrs[k]=v # return type.__new__(cls,name,bases,update_attrs) def __call__(self, *args, **kwargs): if args: raise TypeError(‘must use keyword argument for key function‘) obj = object.__new__(self) #创建对象,self为类Foo for k,v in kwargs.items(): obj.__dict__[k.upper()]=v return obj class Chinese(metaclass=Mymetaclass): country=‘China‘ tag=‘Legend of the Dragon‘ #龙的传人 def walk(self): print(‘%s is walking‘ %self.name) p=Chinese(name=‘egon‘,age=18,sex=‘male‘) print(p.__dict__)
练习三:在元类中控制自定义的类产生的对象相关的属性全部为隐藏属性
class Mymeta(type): def __init__(self,class_name,class_bases,class_dic): #控制类Foo的创建 super(Mymeta,self).__init__(class_name,class_bases,class_dic) def __call__(self, *args, **kwargs): #控制Foo的调用过程,即Foo对象的产生过程 obj = self.__new__(self) self.__init__(obj, *args, **kwargs) obj.__dict__={‘_%s__%s‘ %(self.__name__,k):v for k,v in obj.__dict__.items()} return obj class Foo(object,metaclass=Mymeta): # Foo=Mymeta(...) def __init__(self, name, age,sex): self.name=name self.age=age self.sex=sex obj=Foo(‘egon‘,18,‘male‘) print(obj.__dict__)
练习四:基于元类实现单例模式
#步骤五:基于元类实现单例模式 # 单例:即单个实例,指的是同一个类实例化多次的结果指向同一个对象,用于节省内存空间 # 如果我们从配置文件中读取配置来进行实例化,在配置相同的情况下,就没必要重复产生对象浪费内存了 #settings.py文件内容如下 HOST=‘1.1.1.1‘ PORT=3306 #方式一:定义一个类方法实现单例模式 import settings class mysql: __instance=None def __init__(self,host,port): self.host=host self.port=port @classmethod def singleton(cls): if not cls.__instance: cls.__instance=cls(settings.HOST,settings.PORT) return cls.__instance obj1=Mysql(‘1.1.1.2‘,3306) obj2=Mysql(‘1.1.1.3‘,3307) print(obj1 is obj2) #False obj3=Mysql.singleton() obj4=Mysql.singleton() print(obj3 is obj4) #True #方式二:定制元类实现单例模式 import settings class Mymeta(type): def __init__(self,name,bases,dic): #定义类Mysql时就触发 # 事先先从配置文件中取配置来造一个Mysql的实例出来 self.__instance = object.__new__(self) # 产生对象 self.__init__(self.__instance, settings.HOST, settings.PORT) # 初始化对象 # 上述两步可以合成下面一步 # self.__instance=super().__call__(*args,**kwargs) super().__init__(name,bases,dic) def __call__(self, *args, **kwargs): #Mysql(...)时触发 if args or kwargs: # args或kwargs内有值 obj=object.__new__(self) self.__init__(obj,*args,**kwargs) return obj return self.__instance class Mysql(metaclass=Mymeta): def __init__(self,host,port): self.host=host self.port=port obj1=Mysql() # 没有传值则默认从配置文件中读配置来实例化,所有的实例应该指向一个内存地址 obj2=Mysql() obj3=Mysql() print(obj1 is obj2 is obj3) obj4=Mysql(‘1.1.1.4‘,3307) #方式三:定义一个装饰器实现单例模式 import settings def singleton(cls): #cls=Mysql _instance=cls(settings.HOST,settings.PORT) def wrapper(*args,**kwargs): if args or kwargs: obj=cls(*args,**kwargs) return obj return _instance return wrapper @singleton # Mysql=singleton(Mysql) class Mysql: def __init__(self,host,port): self.host=host self.port=port obj1=Mysql() obj2=Mysql() obj3=Mysql() print(obj1 is obj2 is obj3) #True obj4=Mysql(‘1.1.1.3‘,3307) obj5=Mysql(‘1.1.1.4‘,3308) print(obj3 is obj4) #False