图的DFS与BFS
Posted mini-coconut
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图的DFS与BFS相关的知识,希望对你有一定的参考价值。
1.DFS
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
(1)递归实现
#include <iostream> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 } }; int visited[N + 1] = {0}; void DFS(int start) { visited[start] = 1;
cout<<start<<‘ ‘; for (int i = 1; i <= N; i++) { if (!visited[i] && maze[start - 1][i - 1] == 1) DFS(i); } } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; DFS(i); } return 0; }
(2)也可以用非递归实现,借助于栈的数据结构
#include <iostream> #include <stack> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 } }; int visited[N + 1] = {0}; void DFS(int start) { stack<int> s; s.push(start); visited[start] = 1; while (!s.empty()) { int v = s.top(); cout<<v<<‘ ‘; s.pop(); for (int i = 1; i <= N; i++) { if (maze[v - 1][i - 1] == 1 && !visited[i]) { visited[i] = 1; s.push(i); } } } } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; DFS(i); } return 0; }
其中visited代表着每个节点是否被访问,一般定义成全局的数组。也有将visited定义为局部的数组,作为函数参数引用传递的。
2、BFS
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
#include <iostream> #include <queue> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 1, 0 }, { 0, 1, 1, 1, 0 }, { 1, 0, 0, 0, 0 }, { 0, 0, 1, 1, 0 } }; int visited[N + 1] = { 0, }; void BFS(int start) { queue<int> Q; Q.push(start); visited[start] = 1; while (!Q.empty()) { int front = Q.front(); cout << front << " "; Q.pop(); for (int i = 1; i <= N; i++) { if (!visited[i] && maze[front - 1][i - 1] == 1) { visited[i] = 1; Q.push(i); } } } } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; BFS(i); } return 0; }
以上是关于图的DFS与BFS的主要内容,如果未能解决你的问题,请参考以下文章
019-dfs.bfs-图的遍历-《算法设计技巧与分析》M.H.A学习笔记