matplotlib 添加注释的方式
Posted black-mamba
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matplotlib 添加注释的方式相关的知识,希望对你有一定的参考价值。
matplotlib 添加注释的方式
matplotlib.pyplot.annotate
Annotate the point xy with text s
s : str The text of the annotation
xy : iterable Length 2 sequence specifying the (x,y) point to annotate
xytext : iterable, optional Length 2 sequence specifying the (x,y) to place the text at. If None, defaults to xy.
xycoords : str, Artist, Transform, callable or tuple, optional
The coordinate system that xy is given in.
‘data‘ use the coordinate system of the object being annotated (default)
textcoords : str, Artist, Transform, callable or tuple, optional
The coordinate system that xytext is given, which may be different than the coordinate system used for xy.
arrowprops : dict, optional
arrowstyle & connectionstyle: str, ConnectionStyle, or None, optional
?
The allowed values of ‘arrowstyle‘ are:
Name | Attrs |
---|---|
‘-‘ |
None |
‘->‘ |
head_length=0.4,head_width=0.2 |
‘-[‘ |
widthB=1.0,lengthB=0.2,angleB=None |
‘|-|‘ |
widthA=1.0,widthB=1.0 |
‘-|>‘ |
head_length=0.4,head_width=0.2 |
‘<-‘ |
head_length=0.4,head_width=0.2 |
‘<->‘ |
head_length=0.4,head_width=0.2 |
‘<|-‘ |
head_length=0.4,head_width=0.2 |
‘<|-|>‘ |
head_length=0.4,head_width=0.2 |
‘fancy‘ |
head_length=0.4,head_width=0.4,tail_width=0.4 |
‘simple‘ |
head_length=0.5,head_width=0.5,tail_width=0.2 |
‘wedge‘ |
tail_width=0.3,shrink_factor=0.5 |
The following connection styles are available:
Class | Name | Attrs |
---|---|---|
Angle | angle |
angleA=90,angleB=0,rad=0.0 |
Angle3 | angle3 |
angleA=90,angleB=0 |
Arc | arc |
angleA=0,angleB=0,armA=None,armB=None,rad=0.0 |
Arc3 | arc3 |
rad=0.0 |
Bar | bar |
armA=0.0,armB=0.0,fraction=0.3,angle=None |
import matplotlib.pyplot as plt
import numpy as np
#matplotlib.pyplot.annotate()函数的基本使用
x = np.linspace(-1,2,50)
y1 = 2*x +1
l1, =plt.plot(x,y1,label = ‘one‘)
x0 = 0.5;
y0 = 2*x0 +1
plt.scatter(x0,y0,s = 50,color = ‘r‘,lw= 2)#
plt.plot([x0,x0],[0,y0],‘--‘)
x2 = 1.5;
y2 = 2*x2 +1
plt.scatter(x2,y2,s = 50,color = ‘r‘,lw= 2)#
plt.plot([x2,x2],[0,y2],‘--‘)
plt.annotate(r‘$2x+1=%s$‘%y2,xy = (x2,y2),xycoords = ‘data‘,xytext= (+30,-30),textcoords = ‘offset points‘
,fontsize = 16,arrowprops = dict(arrowstyle = ‘->‘,connectionstyle = ‘arc3,rad = .2‘))
plt.annotate(r‘$2x+1=%s$‘%y0,xy = (x0,y0),xycoords = ‘data‘,xytext= (+30,-30),textcoords = ‘offset points‘
,fontsize = 16,arrowprops = dict(arrowstyle = ‘->‘,connectionstyle = None))
matplotlib.pyplot.text
Add text to the axes.
Add the text s to the axes at location x, y in data coordinates.
x, y : scalars
The position to place the text. By default, this is in data coordinates.
The coordinate system can be changed using the transform parameter.
s : str
The text.
fontdict : dictionary, optional, default: None
A dictionary to override the default text properties.
If fontdict is None, the defaults are determined by your rc parameters.
withdash : boolean, optional, default: False
Creates a TextWithDash instance instead of a Text instance.
import matplotlib.pyplot as plt
import numpy as np
#matplotlib.pyplot.text()函数的基本使用
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)
plt.plot(t,s)
#标题
plt.title(r‘$alpha_i > eta_i$‘, fontsize=20)
#在点(1,-0.6)处添加
plt.text(1, -0.6, r‘$sum_{i=0}^infty x_i$‘, fontsize=20)
plt.text(0.6, 0.6, r‘$mathcal{A}mathrm{sin}(2 omega t)$‘,fontsize=20)
plt.xlabel(‘time (s)‘)
plt.ylabel(‘volts (mV)‘)
plt.show()
以上是关于matplotlib 添加注释的方式的主要内容,如果未能解决你的问题,请参考以下文章
Python可视化31|matplotlib-图添加文本(text)及注释(annotate)
为啥代码片段在 matplotlib 2.0.2 上运行良好,但在 matplotlib 2.1.0 上引发错误
python使用matplotlib可视化使用annotate函数为可视化图像中的数据点添加数值标签注释信息并自定义配置数值标签相对于数据点的偏移(offset)
python使用matplotlib可视化使用annotate函数以及arrowprops参数在可视化图像中添加箭头和文本注释(arrow and text annotation)