已经安装cuda但是tensorflow仍然使用cpu加速的问题
Posted kongle666
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了已经安装cuda但是tensorflow仍然使用cpu加速的问题相关的知识,希望对你有一定的参考价值。
安装了keras、theano之后,一直以为自己用的GPU,今天找到一个小程序测试一下,竟然一直在用CPU(黑人问号)
from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print(‘Used the cpu‘) else: print(‘Used the gpu‘)
解决方案:
pip list 查看有没有安装#tensorflow和tensorboard
pip uninstall tensorflow
pip uninstall keras
pip uninastall tensorflow-gpu
pip install tendorflow-gpu
pip install keras
把页面关了,重启
以上是关于已经安装cuda但是tensorflow仍然使用cpu加速的问题的主要内容,如果未能解决你的问题,请参考以下文章
求助tensorflow下遇到cuda compute capability问题
在python 3.8 / CUDA 11环境下安装tensorflow 1.15
tensorflow gpu版本运行时怎么知道有没有调用gpu以及cuda加速
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速