POJ 1971 Parallelogram Counting
Posted zgqblogs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1971 Parallelogram Counting相关的知识,希望对你有一定的参考价值。
Parallelogram Counting
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 6895 | Accepted: 2423 |
Description
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases. It is followed by the input data for each test case.
The first line of each test case contains an integer n (1 <= n <= 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
The first line of each test case contains an integer n (1 <= n <= 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
Output
Output should contain t lines.
Line i contains an integer showing the number of the parallelograms as described above for test case i.
Line i contains an integer showing the number of the parallelograms as described above for test case i.
Sample Input
2 6 0 0 2 0 4 0 1 1 3 1 5 1 7 -2 -1 8 9 5 7 1 1 4 8 2 0 9 8
Sample Output
5 6
思路:
没有思路。
暴力:TLE
hash:TLE
直接怀疑人生。
在此之间,我甚至怀疑了POJ是不是卡了我的map,后来改成模拟链表。。。。TLE!!
我。。。。。
TLE代码之一:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; typedef unsigned long long ll; const int maxn = 1024; ll x[maxn],y[maxn]; ll state[1000086]; int head[maxn]; int num[maxn],Next[1000086]; int main() { int n,T; ll sd; scanf("%d",&T); while(T--){ int ans=0; scanf("%d",&n); memset(head,-1,sizeof(head)); int t=0; for(int i=1;i<=n;i++){ scanf("%lld%lld",&x[i],&y[i]); for(int j=1;j<i;j++){ sd=(x[i]+x[j])*10000009+y[i]+y[j]; int h=sd%maxn; for(int k=head[h];k!=-1;k=Next[k]){ if(state[k]==sd){ans++;} } t++; state[t]=sd; Next[t]=head[h]; head[h]=t; } } printf("%d ",ans); } }
以上是关于POJ 1971 Parallelogram Counting的主要内容,如果未能解决你的问题,请参考以下文章
TOJ-1313 Parallelogram Counting
Parallelogram Counting(平行四边形个数,思维转化)
LightOJ - 1058 - Parallelogram Counting(数学,计算几何)