RandomForestClassifier参数
Posted mdevelopment
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RandomForestClassifier参数相关的知识,希望对你有一定的参考价值。
【RandomForestClassifier】
参数
n_estimators : 随机森林中树的个数,即学习器的个数。
max_features : 划分叶子节点,选择的最大特征数目
n_features:在寻找最佳分割时要考虑的特征数量
max_depth : 树的最大深度,如果选择default=None,树就一致扩展,直到所有的叶子节点都是同一类样本,或者达到最小样本划分(min_samples_split)的数目。
min_samples_split : 最小样本划分的数目,就是样本的数目少于等于这个值,就不能继续划分当前节点了
min_samples_leaf : 叶子节点最少样本数,如果某叶子节点数目小于这个值,就会和兄弟节点一起被剪枝。
min_weight_fraction_leaf:叶子节点最小的样本权重和
max_leaf_nodes: 最大叶子节点数,默认是”None”,即不限制最大的叶子节点数
min_impurity_split:节点划分的最小不纯度,是结束树增长的一个阈值,如果不纯度超过这个阈值,那么该节点就会继续划分,否则不划分,成为一个叶子节点。
min_impurity_decrease : 最小不纯度减少的阈值,如果对该节点进行划分,使得不纯度的减少大于等于这个值,那么该节点就会划分,否则,不划分。
bootstrap :自助采样,又放回的采样,大量采样的结果就是初始样本的63.2%作为训练集。默认选择自助采样法。
oob_score : bool (default=False)
out-of-bag estimate,包外估计;是否选用包外样本(即bootstrap采样剩下的36.8%的样本)作为验证集,对训练结果进行验证,默认不采用。
n_jobs : 并行使用的进程数,默认1个,如果设置为-1,该值为总的核数。
random_state :随机状态,默认由np.numpy生成
verbose:显示输出的一些参数,默认不输出。
属性(Attribute)
estimators_ :在RandomForestClassifier中,指的是决策树分类器的集合。
classes_:单个类别输出问题或者多类别输出问题中的类别标签数组。
n_classes_:单个类别输出问题或者多类别输出问题中的类别标签的个数。
n_features_ :数据集的特征个数,整型。
n_outputs_ :输出的个数,整型
feature_importances_ :The feature importances (the higher, the more important the feature)特征的权重
oob_score_ :Score of the training dataset obtained using an out-of-bag estimate
oob_decision_function_ :Decision function computed with out-of-bag estimate on the training set.
方法:
apply(X):Apply trees in the forest to X, return leaf indices.将森林中的树应用于X,返回叶索引
desicion_path(X):Return the decision path in the forest
fit(X,Y):在数据集(X,Y)上训练模型。
get_parms():获取模型参数
predict(X):预测数据集X的结果。
predict_log_proba(X):预测数据集X的对数概率。
predict_proba(X):预测数据集X的概率值。
score(X,Y):输出数据集(X,Y)在模型上的准确率。
以上是关于RandomForestClassifier参数的主要内容,如果未能解决你的问题,请参考以下文章
sklearn库学习----随机森林(RandomForestClassifier,RandomForestRegressor)