Akka源码分析-Persistence-AtLeastOnceDelivery
Posted gabry
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Akka源码分析-Persistence-AtLeastOnceDelivery相关的知识,希望对你有一定的参考价值。
使用过akka的应该都知道,默认情况下,消息是按照最多一次发送的,也就是tell函数会尽量把消息发送出去,如果发送失败,不会重发。但有些业务场景,消息的发送需要满足最少一次,也就是至少要成功发送一次。akka在Persistence的基础之上提供了at-least-once传递的语法。
简单来说akka中的at-least-once机制,会在规定时间内等待消息接收成功的确认消息。如果收到,则发送成功;否则,尝试重发;超过重试次数则不再重发。
其实如果不看akka的源码,让我们自己来实现至少一次的语法,实现基本功能也非常简单。首先,我们会在内存中保存消息ID与消息的映射列表,如果指定时间内收到确认消息,则从列表中移除;否则进行重发,到达指定次数之后将为确认的消息从列表移除。重发通过定时器来实现,也就是在固定时间间隔发送心跳消息,发送哪些已经发送且规定时间内没有收到确认消息的消息。当然了,这个映射列表不能无限增长,要不然内存就爆了,所以这应该是一个固定长度的列表。当然了,我们还可以把未确认消息保存到redis等第三方缓存中去,来避免OOM和actor重启后未确认消息列表丢失的问题。
那akka是如何实现的呢?既然at-least-once是在Persistence章节出现,所以未确认消息会通过Persistence机制来持久化喽?
在阅读akka的at-least-once源码之前,有些概念和结论需要说明一下,具体可参见官网,但为了更好的阅读源码,这里再啰嗦几句。
- 发送方actor会在内存中保存为确认消息的列表,为了防止actor重启导致内存数据丢失,需要手动调用持久化相关的函数,来保存内存数据。AtLeastOnceDelivery只提供接口,不负责自动持久化。
- AtLeastOnceDelivery通过deliver方法发送消息,开发者必须在手动通过confirmDelivery来确认消息已经收到。
- 每个消息都必须有一个消息ID,这个消息ID由AtLeastOnceDelivery生成。
- AtLeastOnceDelivery给ActorSelectioin发送消息,这就意味着是通过ActorPath给actor发消息。如果某个actor被开发者stop只有,重新actorOf创建,可能会收到上一个实例的消息。这一点开发者需要特别注意。
- 由于未确认消息保存在内存,可能造成OOM,且在超过内存列表长度的时候,投递消息时会发生异常,需要开发者自行处理该异常。
- 消息发送不再保证顺序,因为消息可能重发,会打乱顺序。
首先来看下官网的demo。
case class Msg(deliveryId: Long, s: String) case class Confirm(deliveryId: Long) sealed trait Evt case class MsgSent(s: String) extends Evt case class MsgConfirmed(deliveryId: Long) extends Evt class MyPersistentActor(destination: ActorSelection) extends PersistentActor with AtLeastOnceDelivery { override def persistenceId: String = "persistence-id" override def receiveCommand: Receive = { case s: String ? persist(MsgSent(s))(updateState) case Confirm(deliveryId) ? persist(MsgConfirmed(deliveryId))(updateState) } override def receiveRecover: Receive = { case evt: Evt ? updateState(evt) } def updateState(evt: Evt): Unit = evt match { case MsgSent(s) ? deliver(destination)(deliveryId ? Msg(deliveryId, s)) case MsgConfirmed(deliveryId) ? confirmDelivery(deliveryId) } } class MyDestination extends Actor { def receive = { case Msg(deliveryId, s) ? // ... sender() ! Confirm(deliveryId) } }
demo很简单,我们需要关注它都继承了哪些接口:PersistentActor、AtLeastOnceDelivery。之前说过,至少一次是基于持久化的,所以能不能只继承AtLeastOnceDelivery呢?能!AtLeastOnceDelivery本身就已经继承PersistentActor了。
/** * Scala API: Mix-in this trait with your `PersistentActor` to send messages with at-least-once * delivery semantics to destinations. It takes care of re-sending messages when they * have not been confirmed within a configurable timeout. Use the [[AtLeastOnceDeliveryLike#deliver]] method to * send a message to a destination. Call the [[AtLeastOnceDeliveryLike#confirmDelivery]] method when the destination * has replied with a confirmation message. * * At-least-once delivery implies that original message send order is not always retained * and the destination may receive duplicate messages due to possible resends. * * The interval between redelivery attempts can be defined by [[AtLeastOnceDeliveryLike#redeliverInterval]]. * After a number of delivery attempts a [[AtLeastOnceDelivery.UnconfirmedWarning]] message * will be sent to `self`. The re-sending will still continue, but you can choose to call * [[AtLeastOnceDeliveryLike#confirmDelivery]] to cancel the re-sending. * * The `AtLeastOnceDelivery` trait has a state consisting of unconfirmed messages and a * sequence number. It does not store this state itself. You must persist events corresponding * to the `deliver` and `confirmDelivery` invocations from your `PersistentActor` so that the * state can be restored by calling the same methods during the recovery phase of the * `PersistentActor`. Sometimes these events can be derived from other business level events, * and sometimes you must create separate events. During recovery calls to `deliver` * will not send out the message, but it will be sent later if no matching `confirmDelivery` * was performed. * * Support for snapshots is provided by [[AtLeastOnceDeliveryLike#getDeliverySnapshot]] and [[AtLeastOnceDeliveryLike#setDeliverySnapshot]]. * The `AtLeastOnceDeliverySnapshot` contains the full delivery state, including unconfirmed messages. * If you need a custom snapshot for other parts of the actor state you must also include the * `AtLeastOnceDeliverySnapshot`. It is serialized using protobuf with the ordinary Akka * serialization mechanism. It is easiest to include the bytes of the `AtLeastOnceDeliverySnapshot` * as a blob in your custom snapshot. * * @see [[AtLeastOnceDeliveryLike]] * @see [[AbstractPersistentActorWithAtLeastOnceDelivery]] for Java API */ trait AtLeastOnceDelivery extends PersistentActor with AtLeastOnceDeliveryLike
请大家仔细、认真的阅读官方源码注释,它说明了AtLeastOnceDelivery这个接口几个非常重要的概念和细节,当然了,前面我们也已经提前说过了。
AtLeastOnceDelivery源码很多,从头分析有点费事,简单起见,还是从官方demo用法入手。demo中发消息时调用了deliver,收到确认消息时调用了confirmDelivery,那就从这两个函数入手。
/** * Scala API: Send the message created by the `deliveryIdToMessage` function to * the `destination` actor. It will retry sending the message until * the delivery is confirmed with [[#confirmDelivery]]. Correlation * between `deliver` and `confirmDelivery` is performed with the * `deliveryId` that is provided as parameter to the `deliveryIdToMessage` * function. The `deliveryId` is typically passed in the message to the * destination, which replies with a message containing the same `deliveryId`. * * The `deliveryId` is a strictly monotonically increasing sequence number without * gaps. The same sequence is used for all destinations of the actor, i.e. when sending * to multiple destinations the destinations will see gaps in the sequence if no * translation is performed. * * During recovery this method will not send out the message, but it will be sent * later if no matching `confirmDelivery` was performed. * * This method will throw [[AtLeastOnceDelivery.MaxUnconfirmedMessagesExceededException]] * if [[#numberOfUnconfirmed]] is greater than or equal to [[#maxUnconfirmedMessages]]. */ def deliver(destination: ActorSelection)(deliveryIdToMessage: Long ? Any): Unit = { internalDeliver(destination)(deliveryIdToMessage) }
注释中说deliveryIdToMessage是一个函数,它根据消息ID构建Any类型的消息。它会一直重试发送消息,直到通过confirmDelivery来确认消息送达。deliveryId是一个自增长的序列号,步长为1。在恢复时不会对外发送消息,但之后会重新发送未确认消息。如果未确认消息到达maxUnconfirmedMessages阈值,则会抛出异常AtLeastOnceDelivery.MaxUnconfirmedMessagesExceededException。
private[akka] final def internalDeliver(destination: ActorSelection)(deliveryIdToMessage: Long ? Any): Unit = { val isWildcardSelection = destination.pathString.contains("*") require(!isWildcardSelection, "Delivering to wildcard actor selections is not supported by AtLeastOnceDelivery. " + "Introduce an mediator Actor which this AtLeastOnceDelivery Actor will deliver the messages to," + "and will handle the logic of fan-out and collecting individual confirmations, until it can signal confirmation back to this Actor.") internalDeliver(ActorPath.fromString(destination.toSerializationFormat))(deliveryIdToMessage) }
internalDeliver首先会校验ActorSelection中不能包含*号,它说你可以自己实现,其实就是用一个中转actor来做汇总。具体为啥就不讨论了,反正注意这一点就好了。
private[akka] final def internalDeliver(destination: ActorPath)(deliveryIdToMessage: Long ? Any): Unit = { if (unconfirmed.size >= maxUnconfirmedMessages) throw new MaxUnconfirmedMessagesExceededException( s"Too many unconfirmed messages, maximum allowed is [$maxUnconfirmedMessages]") val deliveryId = nextDeliverySequenceNr() val now = if (recoveryRunning) { System.nanoTime() - redeliverInterval.toNanos } else System.nanoTime() val d = Delivery(destination, deliveryIdToMessage(deliveryId), now, attempt = 0) if (recoveryRunning) unconfirmed = unconfirmed.updated(deliveryId, d) else send(deliveryId, d, now) }
第一个if语句就不说了,就是判断当前内存列表大小的,而且未保存消息是保存在unconfirmed中的。nextDeliverySequenceNr用来生成消息ID。之后创建了Delivery消息,封装了一些参数,大家要注意下这个case class各个字段的值。最后调用send发送Delivery消息。
private def send(deliveryId: Long, d: Delivery, timestamp: Long): Unit = { context.actorSelection(d.destination) ! d.message unconfirmed = unconfirmed.updated(deliveryId, d.copy(timestamp = timestamp, attempt = d.attempt + 1)) }
send非常简单,就是把源消息发送出去,然后把对应的Delivery数据保存到unconfirmed中。
private var unconfirmed = immutable.SortedMap.empty[Long, Delivery]
unconfirmed是一个有序的Map,按照序列号排序。
/** * Call this method when a message has been confirmed by the destination, * or to abort re-sending. * @see [[#deliver]] * @return `true` the first time the `deliveryId` is confirmed, i.e. `false` for duplicate confirm */ def confirmDelivery(deliveryId: Long): Boolean = { if (unconfirmed.contains(deliveryId)) { unconfirmed -= deliveryId true } else false }
confirmDelivery怎么实现的呢?就是从unconfirmed中移除对应deliveryId的数据,当然了没有收到deliveryId的确认消息,这个列表是不会移除相关数据的。这是不是太简单了点。你是不是想说一句f**k。哈哈,我也想说。不过消息重发是如何实现的呢?前文分析过,是通过心跳来实现的,这就会涉及到一个timer,timer一般会在preStart来实现或者在字段初始化时设定。不过翻遍AtLeastOnceDeliveryLike居然没找到相关的代码,只找到了一个timer的定义。
// will be started after recovery completed private var redeliverTask: Option[Cancellable] = None
private def startRedeliverTask(): Unit = { val interval = redeliverInterval / 2 redeliverTask = Some( context.system.scheduler.schedule(interval, interval, self, RedeliveryTick)(context.dispatcher)) }
官方注释说,会在recovery完成的时候启动这个timmer。如果你看过之前关于持久化的文章,就一定知道,在PersistentActor启动时候,会首先进行recovery操作,而不管这是第一次启动,还是一次重启。所有消息都恢复之后,会再发送恢复成功的消息,同时调用onReplaySuccess方法。而在AtLeastOnceDeliveryLike中也覆盖了onReplaySuccess。其实我们可以把onReplaySuccess看做普通actor的preStart函数。
override private[akka] def onReplaySuccess(): Unit = { redeliverOverdue() startRedeliverTask() super.onReplaySuccess() }
redeliverOverdue先不分析,可以看到startRedeliverTask的调用,也就是启动了一个timer。
/** * Interval between redelivery attempts. * * The default value can be configured with the * `akka.persistence.at-least-once-delivery.redeliver-interval` * configuration key. This method can be overridden by implementation classes to return * non-default values. */ def redeliverInterval: FiniteDuration = defaultRedeliverInterval private val defaultRedeliverInterval: FiniteDuration = Persistence(context.system).settings.atLeastOnceDelivery.redeliverInterval
根据startRedeliverTask的源码来看,它以akka.persistence.at-least-once-delivery.redeliver-interval配置的一半时间作为间隔给self发送RedeliveryTick消息。
override protected[akka] def aroundReceive(receive: Receive, message: Any): Unit = message match { case RedeliveryTick ? redeliverOverdue() case x ? super.aroundReceive(receive, message) }
很显然收到RedeliveryTick消息,调用了redeliverOverdue方法,这个方法应该就是在重新投递未确认的消息喽。
private def redeliverOverdue(): Unit = { val now = System.nanoTime() val deadline = now - redeliverInterval.toNanos var warnings = Vector.empty[UnconfirmedDelivery] unconfirmed .iterator .filter { case (_, delivery) ? delivery.timestamp <= deadline } .take(redeliveryBurstLimit) .foreach { case (deliveryId, delivery) ? send(deliveryId, delivery, now) if (delivery.attempt == warnAfterNumberOfUnconfirmedAttempts) warnings :+= UnconfirmedDelivery(deliveryId, delivery.destination, delivery.message) } if (warnings.nonEmpty) self ! UnconfirmedWarning(warnings) }
这段源码还算简单,就是用当前时间减去重发时间间隔,把小于该时间的消息重新发送,也就是说在一个时间间隔内的消息不会重发(因为还没有到重发的时间,这部分消息会在下一个时间间隔到达的时候发送)。
/** * Maximum number of unconfirmed messages that will be sent at each redelivery burst * (burst frequency is half of the redelivery interval). * If there‘s a lot of unconfirmed messages (e.g. if the destination is not available for a long time), * this helps to prevent an overwhelming amount of messages to be sent at once. * * The default value can be configured with the * `akka.persistence.at-least-once-delivery.redelivery-burst-limit` * configuration key. This method can be overridden by implementation classes to return * non-default values. */ def redeliveryBurstLimit: Int = defaultRedeliveryBurstLimit
redeliveryBurstLimit这个参数也需要注意下,也就是说在重发未确认消息时,不能一次性发送完,而是有一个最大值限制的。不要问我为啥,要是我,就直接一次性全部发送了,堆积的消息还留着撑爆内存啊。不过akka是个通用的、稳定的框架,考虑一下也不算坏事吧。
注意,如果消息重试次数达到warnAfterNumberOfUnconfirmedAttempts这个阈值的话,会给self发送给一个UnconfirmedWarning消息,这跟直接丢弃好像不符合嘛,而且只有在等于阈值的时候才会发送UnconfirmedWarning消息。好丢脸,居然跟预想的不一样。不过这估计是为了考虑灵活性,如果到达重试阈值都没收到确认消息,需要开发者在收到UnconfirmedWarning消息后自行处理。如何处理?三个方案吧,手动调用confirmDelivery丢弃该消息,即发送失败;调用confirmDelivery先把该消息从内存中移除,然后再调用deliver相关的逻辑,做下一次重试,不过此时要做好重试消息的区分;忽略该消息。
分析到这里,AtLeastOnceDelivery机制就基本清楚了,那读者可能会问,这就是把未确认消息先保存在内存,等收到确认消息后再从内存中移除,这是不是太简单了。如果内存爆了,或者actor失败重启了,消息不就丢了?既然是基于持久化的,为啥不把未确认消息持久化呢?我想大概有几点可以说明吧,保存在内存就是为了快,如果每发一个消息都需要持久化,性能上跟不上,而且还涉及到顺序写和随机读两次IO。当然了,AtLeastOnceDelivery提供了持久化的接口。
/** * Full state of the `AtLeastOnceDelivery`. It can be saved with [[PersistentActor#saveSnapshot]]. * During recovery the snapshot received in [[SnapshotOffer]] should be set * with [[#setDeliverySnapshot]]. * * The `AtLeastOnceDeliverySnapshot` contains the full delivery state, including unconfirmed messages. * If you need a custom snapshot for other parts of the actor state you must also include the * `AtLeastOnceDeliverySnapshot`. It is serialized using protobuf with the ordinary Akka * serialization mechanism. It is easiest to include the bytes of the `AtLeastOnceDeliverySnapshot` * as a blob in your custom snapshot. */ def getDeliverySnapshot: AtLeastOnceDeliverySnapshot = AtLeastOnceDeliverySnapshot( deliverySequenceNr, unconfirmed.map { case (deliveryId, d) ? UnconfirmedDelivery(deliveryId, d.destination, d.message) }(breakOut))
这个是啥呢?其实就是为你构建一个AtLeastOnceDeliverySnapshot,这个值包含当前的发送序列号和未确认的消息列表。
/** * If snapshot from [[#getDeliverySnapshot]] was saved it will be received during recovery * in a [[SnapshotOffer]] message and should be set with this method. */ def setDeliverySnapshot(snapshot: AtLeastOnceDeliverySnapshot): Unit = { deliverySequenceNr = snapshot.currentDeliveryId val now = System.nanoTime() unconfirmed = snapshot.unconfirmedDeliveries.map(d ? d.deliveryId → Delivery(d.destination, d.message, now, 0))(breakOut) }
还有一个就是setDeliverySnapshot,他就是从AtLeastOnceDeliverySnapshot中,恢复当前的发送序列号和未确认消息列表。
AtLeastOnceDelivery关于持久化,就提供了这两个接口,仅此而已!那啥时候调用setDeliverySnapshot呢,调用setDeliverySnapshot时的AtLeastOnceDeliverySnapshot参数从哪里获取呢?哈哈,你猜。
其实,这是AtLeastOnceDelivery灵活的地方,它让你自己去实现。怎么实现呢?如果你用过akka的持久化接口,就一定知道除了persist还有一个saveSnapshot
函数,用来保存当前状态的快照。这就简单了,你可以给self发一个定时消息,或者在当前未确认消息达到一定值的时候,通过getDeliverySnapshot函数,获取当前未确认消息的快照,调用saveSnapshot
保存起来。在receiveRecover方法中,收到SnapshotOffer
消息后,再调用setDeliverySnapshot设置当前未确认消息。肿么样是不是很简单呢。
AtLeastOnceDelivery就是太简单了,所以还是有点问题的。比如发送的消息中只包含一个发送序列号,并没有消息ID和重试次数相关的信息,那如何区别消息是重试的,还是第一次发送的呢?我觉得这是一个很大的bug啊,因为我自己是无法区分消息是不是重发的!这样在使用AtLeastOnceDelivery时,就注意几点。
- 消息最好包含消息ID,即唯一值。
- 对消息的处理一定要幂等,也就是说收到重复的消息不会影响业务逻辑。
- 如果对消息的顺序要求严格,一定要仔细研究这其中的逻辑关系。
以上是关于Akka源码分析-Persistence-AtLeastOnceDelivery的主要内容,如果未能解决你的问题,请参考以下文章
Akka源码分析-Cluster-DistributedData
Akka源码分析-Persistence-AtLeastOnceDelivery