批量提取图片主要3个颜色匹配中文名字并写入到excel设置对应颜色的背景
Posted erick-l
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了批量提取图片主要3个颜色匹配中文名字并写入到excel设置对应颜色的背景相关的知识,希望对你有一定的参考价值。
from gevent import monkey monkey.patch_all() import gevent from haishoku.haishoku import Haishoku import math from colorsys import rgb_to_hsv import os from collections import OrderedDict import pandas as pd import time from openpyxl import Workbook from openpyxl.styles import PatternFill, fills colors = dict(( ((255, 182, 193), "浅粉色"), ((255, 192, 203), "粉红"), ((220, 20, 60), "猩红"), ((255, 240, 245), "脸红的淡紫色"), ((219, 112, 147), "苍白的紫罗兰红色"), ((255, 105, 180), "热情的粉红"), ((255, 20, 147), "深粉色"), ((199, 21, 133), "适中的紫罗兰红色"), ((218, 112, 214), "兰花的紫色"), ((216, 191, 216), "蓟"), ((221, 160, 221), "李子"), ((238, 130, 238), "紫罗兰"), ((255, 0, 255), "洋红"), ((139, 0, 139), "深洋红色"), ((128, 0, 128), "紫色"), ((186, 85, 211), "适中的兰花紫"), ((148, 0, 211), "深紫罗兰色"), ((153, 50, 204), "深兰花紫"), ((75, 0, 130), "靛青"), ((138, 43, 226), "深紫罗兰的蓝色"), ((147, 112, 219), "适中的紫色"), ((123, 104, 238), "适中的板岩暗蓝灰色"), ((106, 90, 205), "板岩暗蓝灰色"), ((72, 61, 139), "深岩暗蓝灰色"), ((230, 230, 250), "薰衣草花的淡紫色"), ((248, 248, 255), "幽灵的白色"), ((0, 0, 255), "纯蓝"), ((0, 0, 205), "适中的蓝色"), ((25, 25, 112), "午夜的蓝色"), ((0, 0, 139), "深蓝色"), ((0, 0, 128), "海军蓝"), ((65, 105, 225), "宝蓝"), ((100, 149, 237), "矢车菊的蓝色"), ((176, 196, 222), "淡钢蓝"), ((119, 136, 153), "浅石板灰"), ((112, 128, 144), "石板灰"), ((30, 144, 255), "道奇蓝"), ((240, 248, 255), "爱丽丝蓝"), ((70, 130, 180), "钢蓝"), ((135, 206, 250), "淡蓝色"), ((135, 206, 235), "天蓝色"), ((0, 191, 255), "深天蓝"), ((173, 216, 230), "淡蓝"), ((176, 224, 230), "火药蓝"), ((95, 158, 160), "军校蓝"), ((240, 255, 255), "蔚蓝色"), ((225, 255, 255), "淡青色"), ((175, 238, 238), "苍白的绿宝石"), ((0, 255, 255), "水绿色"), ((0, 206, 209), "深绿宝石"), ((47, 79, 79), "深石板灰"), ((0, 139, 139), "深青色"), ((0, 128, 128), "水鸭色"), ((72, 209, 204), "适中的绿宝石"), ((32, 178, 170), "浅海洋绿"), ((64, 224, 208), "绿宝石"), ((127, 255, 170), "绿玉"), ((0, 250, 154), "适中的碧绿色"), ((245, 255, 250), "适中的春天的绿色"), ((0, 255, 127), "薄荷奶油"), ((60, 179, 113), "春天的绿色"), ((46, 139, 87), "海洋绿"), ((240, 255, 0), "蜂蜜"), ((144, 238, 144), "淡绿色"), ((152, 251, 152), "苍白的绿色"), ((143, 188, 143), "深海洋绿"), ((50, 205, 50), "酸橙绿"), ((0, 255, 0), "酸橙色"), ((34, 139, 34), "森林绿"), ((0, 128, 0), "纯绿"), ((0, 100, 0), "深绿色"), ((127, 255, 0), "查特酒绿"), ((124, 252, 0), "草坪绿"), ((173, 255, 47), "绿黄色"), ((85, 107, 47), "橄榄土褐色"), ((107, 142, 35), "米色(浅褐色)"), ((250, 250, 210), "浅秋麒麟黄"), ((255, 255, 240), "象牙色"), ((255, 255, 224), "浅黄色"), ((255, 255, 0), "纯黄"), ((128, 128, 0), "橄榄"), ((189, 183, 107), "深卡其布"), ((255, 250, 205), "柠檬薄纱"), ((238, 232, 170), "灰秋麒麟"), ((240, 230, 140), "卡其布"), ((255, 215, 0), "金"), ((255, 248, 220), "玉米色"), ((218, 165, 32), "秋麒麟"), ((255, 250, 240), "花的白色"), ((253, 245, 230), "老饰带"), ((245, 222, 179), "小麦色"), ((255, 228, 181), "鹿皮鞋"), ((255, 165, 0), "橙色"), ((255, 239, 213), "番木瓜"), ((255, 235, 205), "漂白的杏仁"), ((255, 222, 173), "Navajo白"), ((250, 235, 215), "古代的白色"), ((210, 180, 140), "晒黑"), ((222, 184, 135), "结实的树"), ((255, 228, 196), "(浓汤)乳脂,番茄等"), ((255, 140, 0), "深橙色"), ((250, 240, 230), "亚麻布"), ((205, 133, 63), "秘鲁"), ((255, 218, 185), "桃色"), ((244, 164, 96), "沙棕色"), ((210, 105, 30), "巧克力"), ((139, 69, 19), "马鞍棕色"), ((255, 245, 238), "海贝壳"), ((160, 82, 45), "黄土赭色"), ((255, 160, 122), "浅鲜肉(鲑鱼)色"), ((255, 127, 80), "珊瑚"), ((255, 69, 0), "橙红色"), ((233, 150, 122), "深鲜肉(鲑鱼)色"), ((255, 99, 71), "番茄"), ((255, 228, 225), "薄雾玫瑰"), ((250, 128, 114), "鲜肉(鲑鱼)色"), ((255, 250, 250), "雪"), ((240, 128, 128), "淡珊瑚色"), ((188, 143, 143), "玫瑰棕色"), ((205, 92, 92), "印度红"), ((255, 0, 0), "纯红"), ((165, 42, 42), "棕色"), ((178, 34, 34), "耐火砖"), ((139, 0, 0), "深红色"), ((128, 0, 0), "栗色"), ((255, 255, 255), "纯白"), ((245, 245, 245), "白烟"), ((220, 220, 220), "Gainsboro"), ((211, 211, 211), "浅灰色"), ((192, 192, 192), "银白色"), ((169, 169, 169), "深灰色"), ((128, 128, 128), "灰色"), ((105, 105, 105), "暗淡的灰色"), ((0, 0, 0), "纯黑") )) def to_hsv(color): """ converts color tuples to floats and then to hsv """ return rgb_to_hsv(*[x / 255.0 for x in color]) # rgb_to_hsv wants floats! def color_dist(c1, c2): """ returns the squared euklidian distance between two color vectors in hsv space """ return sum((a - b) ** 2 for a, b in zip(to_hsv(c1), to_hsv(c2))) def min_color_diff(color_to_match, colors): """ returns the `(distance, color_name)` with the minimal distance to `colors`""" return min( # overal best is the best match to any color: (color_dist(color_to_match, test), colors[test]) # (distance to `test` color, color name) for test in colors) def rgb2hex(rgbcolor): r, g, b = rgbcolor color = "#" color += str(hex(r)).replace(‘x‘, ‘0‘)[-2:] color += str(hex(g)).replace(‘x‘, ‘0‘)[-2:] color += str(hex(b)).replace(‘x‘, ‘0‘)[-2:] return color # 新建一个新的工作表(未保存)。 wb = Workbook() # 保存文件,若加载路径与保存的路径一致将会被覆盖 my_sheet = wb.worksheets[0] row_title = ["图片路径名称","主要图片颜色","主要图片颜色hex","主要图片颜色占比","次要图片颜色","次要图片颜色hex","次要图片颜色占比","次次要图片颜色","次次要图片颜色hex","次次要图片颜色占比"] my_sheet.append(row_title) def get_colorname(index,path): single_data = OrderedDict() try: haishoku = Haishoku.loadHaishoku(path) # single_data[‘图片路径名称‘] = path palette = haishoku.palette main_color = palette[0][1] main_color_pct = palette[0][0] mian_colorname = min_color_diff(main_color, colors)[1] tmp_main_color = rgb2hex(main_color)[1:] # single_data[‘主要图片颜色‘] = mian_colorname # single_data[‘主要图片颜色rgb‘] = rgb2hex(main_color) # single_data[‘主要图片颜色占比‘] = main_color_pct second_color = palette[1][1] second_color_pct = palette[1][0] second_colorname = min_color_diff(second_color, colors)[1] tmp_second_color = rgb2hex(second_color)[1:] # single_data[‘次要图片颜色‘] = second_colorname # single_data[‘次要图片颜色rgb‘] = rgb2hex(second_color) # single_data[‘次要图片颜色占比‘] = second_color_pct thred_color = palette[2][1] thred_color_pct = palette[2][0] thred_colorname = min_color_diff(thred_color, colors)[1] tmp_thred_color = rgb2hex(thred_color)[1:] # single_data[‘次次要图片颜色‘] = thred_colorname # single_data[‘次次要图片颜色rgb‘] = rgb2hex(thred_color) # single_data[‘次次要图片颜色占比‘] = thred_color_pct row_line = [path,mian_colorname,"#"+tmp_main_color,main_color_pct,second_colorname,"#"+tmp_second_color,second_color_pct,thred_colorname,"#"+tmp_thred_color,thred_color_pct] my_sheet.append(row_line) my_sheet["C"+str(2+int(index))].fill = PatternFill(fill_type=fills.FILL_SOLID, fgColor=tmp_main_color, bgColor=tmp_main_color) my_sheet["F"+str(2+int(index))].fill = PatternFill(fill_type=fills.FILL_SOLID, fgColor=tmp_second_color, bgColor=tmp_second_color) my_sheet["I"+str(2+int(index))].fill = PatternFill(fill_type=fills.FILL_SOLID, fgColor=tmp_thred_color, bgColor=tmp_thred_color) print(index+1) # print(path,‘主要颜色是:‘+mian_colorname,‘主要颜色占比:‘+str(main_color_pct*100)+‘%‘,‘ 次要颜色是:‘+second_colorname,‘次要颜色占比:‘+str(second_color_pct*100)+‘%‘,‘ 次次要颜色是:‘+thred_colorname,‘次次要颜色占比:‘+str(thred_color_pct*100)+‘%‘) except Exception as e: print(‘错误-->‘, path, e) pic_names = os.listdir(‘./picture‘) all_abs_picname = (os.path.join(‘./picture‘, name) for name in pic_names if name != ‘.DS_Store‘ and len(name)>4) greenlets = [gevent.spawn(get_colorname, index,path) for index,path in enumerate(all_abs_picname)] gevent.joinall(greenlets) if not os.path.exists(‘图片颜色导出‘): os.mkdir(os.path.join(os.getcwd(), ‘图片颜色导出‘)) wb.save(r‘图片颜色导出‘ + ‘/‘ + time.strftime("%Y%m%d%H%M") + ‘.xlsx‘) print(‘done‘)
以上是关于批量提取图片主要3个颜色匹配中文名字并写入到excel设置对应颜色的背景的主要内容,如果未能解决你的问题,请参考以下文章