Monte Carlo simulated annealing

Posted wq242424

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Monte Carlo simulated annealing相关的知识,希望对你有一定的参考价值。

蒙特·卡罗分子模拟计算

使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的:
1. 使用随机数发生器产生一个随机的分子构型。
2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
3. 计算新的分子构型的能量。
4. 比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个随机数。若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。 若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
5. 如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。
 

模拟退火

原理:模拟退火的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率

模拟退火模型

模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率收敛于全局最优解的全局优化算法;模拟退火算法具有并行性

以上是关于Monte Carlo simulated annealing的主要内容,如果未能解决你的问题,请参考以下文章

蒙特卡洛模拟(Monte Carlo Simulation)浅析

A Monte Carlo Simulation to Draw 3 same Color Balls Without Replaced From A Bucket With 3 Red Balls

蒙特卡罗法 (Monte Carlo Methods)

蒙特卡洛(Monte Carlo)方法求面积

Monte Carlo Integration

Monte-Carlo Dropout