质数判断(Miller_Rabin)

Posted xuyixuan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了质数判断(Miller_Rabin)相关的知识,希望对你有一定的参考价值。

题意简述

给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)

题解思路

费马小定理: n是一个奇素数,a是任何整数((1≤ a≤n-1)) ,则(a^{p-1}≡1(mod p))
推论:如果n是一个奇素数,则方程(x^2 ≡ 1 (mod n))只有±1两个解

代码

#include <cstdio>
using namespace std;
const int t[5] = {0, 2, 7, 61};
int n, m, x;
int ksm(int a, int r, int mod)
{
    if (r == 0)
        return 1;
    if (r == 1)
        return a;
    int x = ksm(a, r >> 1, mod) % mod;
    if (r & 1)
        return ((long long) x * x * a) % mod; 
    else return ((long long) x * x) % mod;
}
bool mr(int x)
{
    if (x == 1) 
        return 0;
    int cnt = 0, p1 = x - 1;
    while (p1 % 2 == 0)
    {
        ++cnt;
        p1 /= 2;
    }
    for (int i = 1; i <= 3; ++i)
    {
        if (x == t[i])
            return 1;
        int xx = ksm(t[i], p1, x);
        if (xx % x != 1 && xx % x != x - 1)
        {
            bool flag = 0;
            for (int j = 1; j <= cnt; ++j)
            {
                xx = (long long) xx * xx % x;
                if (xx == x - 1)
                {
                    flag = 1; 
                    break;
                }
            }
            if (!flag)
                return 0;
        } 
    }
    return 1;
}
int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; ++i)
    {
        scanf("%d", &x);
        if (mr(x)) puts("Yes");
        else puts("No");
    }
}

以上是关于质数判断(Miller_Rabin)的主要内容,如果未能解决你的问题,请参考以下文章

[模板] Miller_Rabin和Pollard_Rho

洛谷P3383 模板线性筛素数(Miller_Rabin)

Miller_Rabin 素数测试算法

素数判定Miller_Rabin 算法详解

Miller_Rabin算法(随机算法,判断一个数是否是素数)

数论Miller_Rabin