曼哈顿最小生成树

Posted ivan-count

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了曼哈顿最小生成树相关的知识,希望对你有一定的参考价值。

1、poj 3241 Object Clustering

  题意:平面上有n个点,点之间的距离采用曼哈顿距离衡量。求一个最小距离X,使得在把这些点分为k组后,每组中两两点之间的距离不超过X。

  思路:首先我们这么想,如果所有点都在1个组中,即k=1时,那么所要求的X即为该n个点的曼哈顿最小生成树的最大边;当k=2时,如果我们将最小生成树的最大边割开,形成2组,答案仍未原最小生成树的第2大的边(不会比之还小)……以此类推,可转换为求解平面上n个点的曼哈顿距离最小生成树的第k大的边的长度。

  接下来,就是怎么构造曼哈顿最小生成树。如果我们将所有点两两建边再去寻找最小生成树,在n很大的情况下是不合适的,况且其中有一些边也没有必要建。我们把平面坐标分为8个区域:

技术分享图片(转自:https://blog.csdn.net/touwangyi/article/details/77017360)

  我们发现,根据对原点对称,我们分为四组:R1与R5,R2与R6,R3与R7,R4与R8。对于R1和R5内的点,假设当前点为O,我们在其位置上建立直角坐标系,那么对于其R1方向内的点A,B,我们没有必要连接O、B,只需连接O、A。因此,对于所有yi-yo>xi-xo,xi>xo即yi-xi>yo-xo,xi>xo的点i,找到最小的xi+yi那个点,将其与点O相连(记录下边)。这样,我们对点按照x为第一关键字升序、y为第二关键字升序,然后用树状数组维护区间最小值(xi+yi),用yi-xi离散化后的编号作为树状数组的下标,从最后一个点起更新树状数组。

  对于其余区域,我们计算完R1与R5后,先让所有点关于y=x对称,则R2、R6内的点转到R1、R5区域,用对待原R1、R5内的点同样对待它们。因此,类似地,我们通过3次旋转、4次更新树状数组和连边,就得到所有有效的边,接下来,利用最小生成树原理,找到第n-1-(k-1)次添加进生成树的边的边权即可。

技术分享图片
  1 #include<iostream>
  2 #include<vector>
  3 #include<algorithm>
  4 using namespace std;
  5 const int maxn = 1e5 + 10;
  6 const int INF = 0x3f3f3f3f;
  7 int n,k;
  8 /*树状数组维护最小值*/
  9 struct node1
 10 {
 11     int val, id;//val表示ai+bi,id表示对应的点
 12 }tree[maxn];
 13 void tree_init()
 14 {
 15     for (int i = 0; i < maxn; i++) tree[i].val = INF, tree[i].id = -1;
 16 }
 17 int lowbit(int x)
 18 {
 19     return x & (-x);
 20 }
 21 void update(int x, int val, int id)
 22 {
 23     while (x)
 24     {
 25         if (tree[x].val > val) tree[x].val = val, tree[x].id = id;
 26         x -= lowbit(x);
 27     }
 28 }
 29 int query(int x, int MAX)
 30 {
 31     int minv = INF, ans = -1;
 32     while (x <= MAX)
 33     {
 34         if (tree[x].val < minv) minv = tree[x].val, ans = tree[x].id;
 35         x += lowbit(x);
 36     }
 37     return ans;
 38 }
 39 /*树状数组结束*/
 40 struct P
 41 {
 42     int ai, bi,id;
 43     friend bool operator<(const P&p1, const P&p2)
 44     {
 45         if (p1.ai == p2.ai) return p1.bi < p2.bi;
 46         else return p1.ai < p2.ai;
 47     }
 48 }points[maxn];
 49 struct EDGE
 50 {
 51     int from, to, dist;
 52     EDGE(int ff=0,int uu=0,int dd=0):from(ff),to(uu),dist(dd){}
 53     friend bool operator<(const EDGE&e1, const EDGE&e2)
 54     {
 55         return e1.dist < e2.dist;
 56     }
 57 }edge[maxn<<1];
 58 int totedge;
 59 void addedge(int u, int v,int id1,int id2)
 60 {
 61     edge[totedge] = EDGE(u, v, abs(points[id1].ai-points[id2].ai)+abs(points[id1].bi-points[id2].bi));
 62     totedge++;
 63 }
 64 int v1[maxn];//bi-ai
 65 vector<int>all;
 66 int sz;
 67 int get_id(int v)
 68 {
 69     return lower_bound(all.begin(), all.end(), v) - all.begin()+1;
 70 }
 71 void R1_addedge()
 72 {//对R1、R5内点建边
 73     sort(points + 1, points + 1 + n);
 74     all.clear();
 75     for (int i = 1; i <= n; i++) v1[i] = points[i].bi - points[i].ai, all.push_back(v1[i]);
 76     sort(all.begin(), all.end());
 77     all.erase(unique(all.begin(), all.end()), all.end());
 78     sz = all.size();
 79     tree_init();
 80     for (int i = n; i >= 1; --i)
 81     {
 82         int pos = get_id(v1[i]);
 83         int tans = query(pos, sz);
 84         if (tans != -1)
 85         {
 86             addedge(points[i].id, points[tans].id, i, tans);
 87         }
 88         update(pos, points[i].ai + points[i].bi, i);
 89     }
 90 }
 91 /*并查集*/
 92 int pre[maxn];
 93 int Find(int x)
 94 {
 95     if (pre[x] == x) return x;
 96     else
 97     {
 98         int fa = pre[x];
 99         pre[x] = Find(fa);
100         return pre[x];
101     }
102 }
103 /*
104 连好R1域后,把所有点按直线y = x翻转(此时初始的R2域的到了R1域,初始的R3域的到了R8域,初始的R4域的到了R7域),就可以求R2域了;再把所有点按直线x = 0翻转(此时初始的R3域(之前在R8域)的到了R1域,初始的R4域(之前在R7)的到了R2域),就可以求R3域了;再把所有点按直线y = x翻转(此时初始的R4域(之前在R2域)的到了R1域,就可以求R4域
105 */
106 void ManHattan_addedge()
107 {
108     for (int dir = 0; dir < 4; dir++)
109     {
110         if (dir == 1 || dir == 3)
111         {
112             for (int i = 1; i <= n; i++) swap(points[i].ai, points[i].bi);
113         }
114         else if (dir == 2)
115         {
116             for (int i = 1; i <= n; i++) points[i].ai = -points[i].ai;
117         }
118         R1_addedge();
119     }
120 }
121 int k_ans;
122 void solve()
123 {
124     for (int i = 0; i <= n; i++) pre[i] = i;
125     sort(edge, edge + totedge);
126     int cur = 0, remain = n - 1,now=0;
127     while (remain&&now<totedge)
128     {
129         int u = edge[now].from, v = edge[now].to;
130         int fu = Find(u), fv = Find(v);
131         if (fu != fv)
132         {
133             remain--, cur++;
134             if (remain == k - 1)
135             {
136                 k_ans = edge[now].dist;
137                 return;
138             }
139             pre[fu] = fv;
140         }
141         now++;
142     }
143 }
144 int main()
145 {
146     while (~scanf("%d%d", &n, &k) && n)
147     {
148         totedge = 0;
149         for (int i = 1; i <= n; i++) scanf("%d%d", &points[i].ai, &points[i].bi), points[i].id = i;
150         ManHattan_addedge();
151         solve();
152         printf("%d
", k_ans);
153     }
154 
155     return 0;
156 }
View Code

 

以上是关于曼哈顿最小生成树的主要内容,如果未能解决你的问题,请参考以下文章

poj 3241 Object Clustering (曼哈顿最小生成树)

[学习-思考-探究]莫队算法 曼哈顿最小生成树与分块区间询问算法-3

[学习-思考-探究]莫队算法 曼哈顿最小生成树与分块区间询问算法-4

[学习-思考-探究]莫队算法 曼哈顿最小生成树与分块区间询问算法-2

[学习-思考-探究]莫队算法 曼哈顿最小生成树与分块区间询问算法

Codeforces Round #597 (Div. 2)D(最小生成树)