最基础的“穷竭搜索”
Posted ymir-taomee
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最基础的“穷竭搜索”相关的知识,希望对你有一定的参考价值。
栈(Stack)
1 #include <stack> 2 #include <cstdio> 3 4 using namespace std; 5 6 int main(int argc, char * argv[]) 7 { 8 stack<int> s; 9 s.push(1); 10 s.push(2); 11 s.push(3); 12 printf("%d ",s.size()); 13 printf("%d ",s.empty()); 14 printf("%d ",s.top()); 15 s.pop(); 16 printf("%d ",s.top()); 17 s.pop(); 18 printf("%d ",s.top());//stack非空 19 s.pop(); 20 printf("%d ",s.size()); 21 printf("%d ",s.empty()); 22 return 0; 23 }
队列(Queue)
1 #include <queue> 2 #include <cstdio> 3 4 using namespace std; 5 6 int main(int argc, char * argv[]) 7 { 8 queue<int> que; 9 que.push(1); 10 que.push(2); 11 que.push(3); 12 printf("%d ",que.size()); 13 printf("%d ",que.front()); 14 printf("%d ",que.back()); 15 que.pop(); 16 printf("%d ",que.size()); 17 printf("%d ",que.front()); 18 printf("%d ",que.back()); 19 que.pop(); 20 printf("%d ",que.size()); 21 printf("%d ",que.front()); 22 printf("%d ",que.back()); 23 que.pop(); 24 printf("%d ",que.size()); 25 printf("%d ",que.front());//队列为空,返回值是不确定的 26 printf("%d ",que.back());//队列为空,返回值是不确定的 27 printf("%d ",que.empty()); 28 }
部分和问题
- 题目大意:给定整数a1,a2,…,an,判断是否可以从中选出若干数,使它们的和恰好为k
- 限制条件:
- 1≤n≤20
- -108≤ai≤108
- -108≤k≤108
- 题解:深度优先搜索,从a1开始按顺序决定每个数加或不加,在全部n个数都决定后在判断它们的和是不是k即可。因为状态数是2n,所以复杂度是O(2n)。
- 代码:
1 #include <iostream> 2 3 using namespace std; 4 5 bool dfs(int, int); 6 7 int n,k; 8 int * a; 9 10 int main() 11 { 12 cin >> n >> k; 13 a = new int[n]; 14 for (int i=0; i<n; i++) 15 { 16 cin >> a[i]; 17 } 18 bool f=dfs(0,0); 19 if (f) cout << "Yes! "; 20 else cout << "No! "; 21 } 22 23 bool dfs(int i, int s)//已经从前n项得到了和s 24 { 25 if (i==n) return s==k;//如果前n项都已经计算过了,返回s与k是否相等 26 if (dfs(i+1,s)) return true;// 不加上a[i]的情况 27 if (dfs(i+1,s+a[i])) return true;//加上a[i]的情况 28 return false;//无论是否加上a[i]都不能凑成k就返回false 29 }
Lake Counting(POJ 2386)
- 原题如下:
Lake Counting
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 44746 Accepted: 22116 Description
Due to recent rains, water has pooled in various places in Farmer John‘s field, which is represented by a rectangle of N x M (1 <= N <= 100; 1 <= M <= 100) squares. Each square contains either water (‘W‘) or dry land (‘.‘). Farmer John would like to figure out how many ponds have formed in his field. A pond is a connected set of squares with water in them, where a square is considered adjacent to all eight of its neighbors.
Given a diagram of Farmer John‘s field, determine how many ponds he has.Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: M characters per line representing one row of Farmer John‘s field. Each character is either ‘W‘ or ‘.‘. The characters do not have spaces between them.Output
* Line 1: The number of ponds in Farmer John‘s field.Sample Input
10 12 W........WW. .WWW.....WWW ....WW...WW. .........WW. .........W.. ..W......W.. .W.W.....WW. W.W.W.....W. .W.W......W. ..W.......W.
Sample Output
3
Hint
OUTPUT DETAILS:
There are three ponds: one in the upper left, one in the lower left,and one along the right side. - 题解:从任意的‘W‘开始,不停地把邻接的部分用‘.‘代替,1次dfs后与初始的这个W连接的所有‘W‘就都被替换成了‘.‘,因此直到图中不再存在w为止,总共进行dfs的次数就是答案了,复杂度是O(8*n*m)=O(m*n)
- 代码:
1 #include <iostream> 2 3 using namespace std; 4 5 int n,m; 6 char ** a; 7 8 void dfs(int, int); 9 10 int main() 11 { 12 cin >> n >> m; 13 a = new char*[n]; 14 for (int i=0; i<n; i++) a[i]=new char[m]; 15 for (int i=0; i<n; i++) 16 { 17 for (int j=0; j<m; j++) 18 { 19 cin >> j[i[a]]; 20 } 21 } 22 int s=0; 23 for (int i=0; i<n; i++) 24 { 25 for (int j=0; j<m; j++) 26 { 27 if (j[i[a]]==‘W‘) 28 { 29 dfs(i,j); 30 ++s; 31 } 32 } 33 } 34 cout << s << endl; 35 } 36 37 void dfs(int x, int y) 38 { 39 y[x[a]] =‘.‘; 40 for (int dx=-1; dx<=1; dx++) 41 { 42 for (int dy=-1; dy<=1; dy++) 43 { 44 int xx=x+dx, yy=y+dy; 45 if (xx>=0 && xx<n && yy>=0 && yy<m && yy[xx[a]]==‘W‘) dfs(xx,yy); 46 } 47 } 48 }
迷宫的最短路径
- 题目大意:给定一个大小为N*M的迷宫,迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四格的通道移动,要求出从起点到终点所需的最小步数。假定从起点一定可以移动到终点。
- 限制条件:N,M≤100
- 题解:宽度优先搜索按照距开始状态由近及远的顺序进行搜索(只要将已经访问的状态用标记管理起来),因此可以很容易地用来求最短路径、最少操作之类问题的答案。这个问题中状态仅仅是目前所在位置的坐标,因此可以构造成pair或者编码成int来表达状态。当状态更加复杂时,就需要封装成一个类来表示状态了。复杂度是O(4*n*m)=O(n*m)
- 代码:
1 #include <iostream> 2 #include <queue> 3 using namespace std; 4 typedef pair<int,int> P; 5 6 const int INF=100000000; 7 const int MAX_N=100; 8 const int MAX_M=100; 9 char maze[MAX_N][MAX_M+1]; 10 int n,m; 11 int sx=0,sy=1; 12 int tx=9,ty=8; 13 const int dx[4]{-1,0,0,1}; 14 const int dy[4]{0,1,-1,0}; 15 int d[MAX_N][MAX_M]; 16 17 int bfs(); 18 19 int main() 20 { 21 cin >> n >> m; 22 for (int i=0; i<n; i++) 23 for (int j=0; j<m; j++) 24 cin >> j[i[maze]]; 25 cout << bfs(); 26 } 27 28 int bfs() 29 { 30 queue<P> que; 31 for (int i=0; i<n; i++) 32 for (int j=0; j<n; j++) 33 j[i[d]]=INF; 34 que.push(P(sx,sy)); 35 sy[sx[d]]=0; 36 while (que.size()) 37 { 38 P p=que.front(); 39 que.pop(); 40 if (p.first==tx && p.second==ty) break; 41 for (int i=0; i<4; i++) 42 { 43 int xx=p.first+dx[i]; 44 int yy=p.second+dy[i]; 45 if (xx>=0 && xx<n && yy>=0 && yy<m && yy[xx[maze]]!=‘#‘ && yy[xx[d]]==INF) 46 { 47 que.push(P(xx,yy)); 48 yy[xx[d]]=p.second[p.first[d]]+1; 49 } 50 } 51 } 52 return ty[tx[d]]; 53 }
特殊状态的枚举
虽然生成可行解空间多数采用深度优先搜索,但在状态空间比较特殊时其实可以很简短地实现
如,C++标准库中提供了next_permutation函数,可以把n个元素共n!种不同的排列生成出来
又如,通过位运算,可以枚举n个元素中取出k个的共C(n,k)种状态或是某个集合中的全部子集等
贴一段书上的代码:
1 bool used[MAX_N]; 2 int perm[MAX_N]; 3 4 void permutation1(int pos, int n) 5 { 6 if (pos==n) 7 { 8 /* 9 *这里编写需要对perm进行的操作 10 */ 11 return ; 12 } 13 for (int i=0; i<n; i++) 14 if (!used[i]) 15 { 16 perm[pos]=i; 17 used[i]=true; 18 permutation1(pos+1,n); 19 used[i]=false; 20 } 21 return ; 22 } 23 _______________________________________________ 24 #include <algorithm> 25 //即使有重复的元素也会生成所有的排列 26 //next_permutation是按照字典序来生成下一个排列的 27 int perm2[MAX_N]; 28 void permutation2(int n) 29 { 30 for (int i; i<n; i++) perm2[i]=i; 31 do 32 { 33 /* 34 *这里编写需要对perm2进行的操作 35 */ 36 } 37 while (next_permutation(perm2, perm+n)); 38 //所有的排列都生成后,next_permutation会返回false 39 return ; 40 }
以上是关于最基础的“穷竭搜索”的主要内容,如果未能解决你的问题,请参考以下文章