聚类算法相关

Posted hbwxcw

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了聚类算法相关相关的知识,希望对你有一定的参考价值。

Bisecting KMeans

Bisecting KMeans算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二,之后选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇,以此进行下去,直到簇的数目等于用户给定的数目k为止。

Gaussian Mixture Model

所谓混合高斯模型就是指对样本的概率密度分布进行估计,而估计的模型是几个高斯模型加权之和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。然后我们可以选取概率最大的类所为判决结果。

Latent Dirichlet Allocation

LDA主题模型的思想是将一篇文档中的内容抽象成多个主题,每个主题拥有自己的词,并且每篇文档按照概率分布的形式给出。

以上是关于聚类算法相关的主要内容,如果未能解决你的问题,请参考以下文章

谱聚类算法总结

一致性聚类(用于确定聚类算法中聚类的数目)

聚类算法

03-01 K-Means聚类算法

如何评价无监督聚类算法

机器学习笔记:K-means聚类算法的Python实现