网络流24题之 1738: 最小路径覆盖问题
Posted q1143316492
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了网络流24题之 1738: 最小路径覆盖问题相关的知识,希望对你有一定的参考价值。
网络流24题之 1738: 最小路径覆盖问题
模板题,求一个图的最小路径覆盖,输出边数和,路径。不会输出路径的跑dinic然后把图输出来就懂了。
#include <bits/stdc++.h>
using namespace std;
int k;
struct Dinic {
static const int MAXN = 30005 + 7;
static const int MAXM = 1e7 + 7;
static const int INF = 0x3f3f3f3f;
int n, m, s, t;
int first[MAXN], cur[MAXN], dist[MAXN], sign;
struct Node {
int to, flow, next;
} edge[MAXM];
inline void init(int start, int vertex, int ss, int tt) {
n = vertex, s = ss, t = tt;
for(int i = start; i <= n; i++ ) {
first[i] = -1;
}
sign = 0;
}
inline void addEdge(int u, int v, int flow) {
edge[sign].to = v, edge[sign].flow = flow, edge[sign].next = first[u];
first[u] = sign++;
}
inline void add_edge(int u, int v, int flow) {
addEdge(u, v, flow);
addEdge(v, u, 0);
}
int match[MAXN] = {0}, vis[MAXN] = {0};
void show_graph() {
int cnt = 0;
for(int i = 1; i <= k; i++ ) {
for(int j = first[i]; ~j; j = edge[j].next) {
int to = edge[j].to, w = edge[j].flow;
if(to != s && edge[j ^ 1].flow) {
match[i] = to - k;
}
}
}
for(int i = 1; i <= k; i++ ) {
int now = i;
if(vis[i]) {
continue;
}
while(1) {
printf("%d", now);
vis[now] = 1;
now = match[now];
if(now == 0) {
cnt++;
puts("");
break;
} else {
printf(" ");
}
}
}
printf("%d
", cnt);
}
inline int dinic() {
int max_flow = 0;
while(bfs(s, t)) {
for(int i = 0; i <= n; i++ ) {
cur[i] = first[i];
}
max_flow += dfs(s, INF);
}
return max_flow;
}
bool bfs(int s, int t) {
memset(dist, -1, sizeof(dist));
queue<int>que;
que.push(s), dist[s] = 0;
while(!que.empty()) {
int now = que.front();
que.pop();
if(now == t) {
return 1;
}
for(int i = first[now]; ~i; i = edge[i].next) {
int to = edge[i].to, flow = edge[i].flow;
if(dist[to] == -1 && flow > 0) {
dist[to] = dist[now] + 1;
que.push(to);
}
}
}
return 0;
}
int dfs(int now, int max_flow) {
if(now == t) {
return max_flow;
}
int ans = 0, next_flow = 0;
for(int &i = cur[now]; ~i; i = edge[i].next) {
int to = edge[i].to, flow = edge[i].flow;
if(dist[to] == dist[now] + 1 && flow > 0) {
next_flow = dfs(to, min(max_flow - ans, flow));
ans += next_flow;
edge[i].flow -= next_flow;
edge[i ^ 1].flow += next_flow;
if(ans == max_flow) {
return max_flow;
}
}
}
if(ans == 0) {
return dist[now] = 0;
}
return ans;
}
} cwl;
int main() {
int n, m;
while(~scanf("%d %d", &n, &m)) {
cwl.init(0, 2 * n + 1, 0, 2 * n + 1);
for(int i = 1; i <= n; i++ ) {
cwl.add_edge(0, i, 1);
cwl.add_edge(i + n, 2 * n + 1, 1);
}
for(int i = 1; i <= m; i++ ) {
int u, v;
scanf("%d %d", &u, &v);
cwl.add_edge(u, v + n, 1);
}
cwl.dinic();
k = n;
cwl.show_graph();
}
return 0;
}
以上是关于网络流24题之 1738: 最小路径覆盖问题的主要内容,如果未能解决你的问题,请参考以下文章