并查集的原理及实现

Posted yanchaoyi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并查集的原理及实现相关的知识,希望对你有一定的参考价值。

一、定义

  并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。

二、代码实现

  在并查集结构中,用一个pre[]数组来存储当前结点的父亲结点,有两个函数,found()函数用来寻找根结点,join()函数用来合并两个并查集。


 

初始化

  把每个结点的父亲结点初始化为自己

1 void init()
2 {
3     for(int i=0;i<n;i++)
4         pre[i]=i;
5 }

 

found()函数

  寻找当前结点的根结点

 

 1 int found(int x)
 2 {
 3     int r=x;
 4     while(r!=pre[r])
 5     {
 6         r=pre[r];
 7     }
 8     int i=x,j;
 9     while(i!=r)//路径压缩
10     {
11         j=pre[i];
12         pre[i]=r;
13         i=j;
14     }
15     return r;
16 }

 

路径压缩是防止并查集查询的时间复杂度退化为O(n),形成一条链,因此把路径上的父亲结点全部设为根结点

同时路径压缩也可以通过递归来实现

1 int found(int x)
2 {
3     return pre[x]=(x==pre[x]?x:found(pre[x]));
4 }

join()函数

  用来合并两个并查集,先判定两个结点是否属于一个并查集,如果不属于,则将x根结点的父亲结点设为y的根结点

1 void join(int x,int y)
2 {
3     int a=find(x);
4     int b=find(y);
5     if(a!=b)
6     {
7         pre[a]=b;
8     }
9 }

  除了使用路径压缩来防止并查集退化外,还可以使用启发式优化,在每次合并时将层数少的树合并到层数多的树上。

 

  

以上是关于并查集的原理及实现的主要内容,如果未能解决你的问题,请参考以下文章

关于并查集的一切全在这里了

树的应用——并查集及实现代码

并查集介绍及实现以及相关例题

CCA算法实现和优化

并查集的优化及应用

❤️数据结构入门❤️(2 - 5)- 并查集