049 DSL语句

Posted juncaoit

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了049 DSL语句相关的知识,希望对你有一定的参考价值。

1.说明

  技术分享图片

 

2.sql程序

 1 package com.scala.it
 2 
 3 
 4 import org.apache.spark.sql.hive.HiveContext
 5 import org.apache.spark.{SparkConf, SparkContext}
 6 
 7 import scala.math.BigDecimal.RoundingMode
 8 
 9 object SparkSQLDSLDemo {
10   def main(args: Array[String]): Unit = {
11     val conf = new SparkConf()
12       .setMaster("local[*]")
13       .setAppName("dsl")
14     val sc = SparkContext.getOrCreate(conf)
15     val sqlContext = new HiveContext(sc)
16 
17     // =================================================
18     sqlContext.sql(
19       """
20         | SELECT
21         |  deptno as no,
22         |  SUM(sal) as sum_sal,
23         |  AVG(sal) as avg_sal,
24         |  SUM(mgr) as sum_mgr,
25         |  AVG(mgr) as avg_mgr
26         | FROM hadoop09.emp
27         | GROUP BY deptno
28         | ORDER BY deptno DESC
29       """.stripMargin).show()
30   }
31 }

 

3.效果

  技术分享图片

 

4.DSL对上面程序重构

 1 package com.scala.it
 2 
 3 
 4 import org.apache.spark.sql.hive.HiveContext
 5 import org.apache.spark.{SparkConf, SparkContext}
 6 
 7 import scala.math.BigDecimal.RoundingMode
 8 
 9 object SparkSQLDSLDemo {
10   def main(args: Array[String]): Unit = {
11     val conf = new SparkConf()
12       .setMaster("local[*]")
13       .setAppName("dsl")
14     val sc = SparkContext.getOrCreate(conf)
15     val sqlContext = new HiveContext(sc)
16 
17     // =================================================
18     sqlContext.sql(
19       """
20         | SELECT
21         |  deptno as no,
22         |  SUM(sal) as sum_sal,
23         |  AVG(sal) as avg_sal,
24         |  SUM(mgr) as sum_mgr,
25         |  AVG(mgr) as avg_mgr
26         | FROM hadoop09.emp
27         | GROUP BY deptno
28         | ORDER BY deptno DESC
29       """.stripMargin).show()
30 
31     //=================================================
32     // 读取数据形成DataFrame,并缓存DataFrame
33     val df = sqlContext.read.table("hadoop09.emp")
34     df.cache()
35     //=================================================
36     import sqlContext.implicits._
37     import org.apache.spark.sql.functions._
38 
39     //=================================================对上面sql进行DSL
40     df.select("deptno", "sal", "mgr")
41       .groupBy("deptno")
42       .agg(
43         sum("sal").as("sum_sal"),
44         avg("sal").as("avg_sal"),
45         sum("mgr").as("sum_mgr"),
46         avg("mgr").as("avg_mgr")
47       )
48       .orderBy($"deptno".desc)
49       .show()
50   }
51 }

 

5.效果

  技术分享图片

 

6.Select语句

  可以使用string,也可以使用col,或者$。

  在Select中可以使用自定义的函数进行使用。

 1 package com.scala.it
 2 
 3 
 4 import org.apache.spark.sql.hive.HiveContext
 5 import org.apache.spark.{SparkConf, SparkContext}
 6 
 7 import scala.math.BigDecimal.RoundingMode
 8 
 9 object SparkSQLDSLDemo {
10   def main(args: Array[String]): Unit = {
11     val conf = new SparkConf()
12       .setMaster("local[*]")
13       .setAppName("dsl")
14     val sc = SparkContext.getOrCreate(conf)
15     val sqlContext = new HiveContext(sc)
16 
17     // =================================================
18     sqlContext.sql(
19       """
20         | SELECT
21         |  deptno as no,
22         |  SUM(sal) as sum_sal,
23         |  AVG(sal) as avg_sal,
24         |  SUM(mgr) as sum_mgr,
25         |  AVG(mgr) as avg_mgr
26         | FROM hadoop09.emp
27         | GROUP BY deptno
28         | ORDER BY deptno DESC
29       """.stripMargin).show()
30 
31     //=================================================
32     // 读取数据形成DataFrame,并缓存DataFrame
33     val df = sqlContext.read.table("hadoop09.emp")
34     df.cache()
35     //=================================================
36     import sqlContext.implicits._
37     import org.apache.spark.sql.functions._
38 
53     //=================================================Select语句
54     df.select("empno", "ename", "deptno").show()
55     df.select(col("empno").as("id"), $"ename".as("name"), df("deptno")).show()
56     df.select($"empno".as("id"), substring($"ename", 0, 1).as("name")).show()
57     df.selectExpr("empno as id", "substring(ename,0,1) as name").show()
58 
59     //使用自定义的函数
60     sqlContext.udf.register(
61       "doubleValueFormat", // 自定义函数名称
62       (value: Double, scale: Int) => {
63         // 自定义函数处理的代码块
64         BigDecimal.valueOf(value).setScale(scale, RoundingMode.HALF_DOWN).doubleValue()
65       })
66     df.selectExpr("doubleValueFormat(sal,2)").show()
67   }
68 }

 

7.Where语句

1     //=================================================Where语句
2     df.where("sal > 1000 and sal < 2000").show()
3     df.where($"sal" > 1000 && $"sal" < 2000).show()

 

8.groupBy语句

  建议使用第三种方式,也是最常见的使用方式。

  同样是支持自定义函数。

package com.scala.it


import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{SparkConf, SparkContext}

import scala.math.BigDecimal.RoundingMode

object SparkSQLDSLDemo {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setMaster("local[*]")
      .setAppName("dsl")
    val sc = SparkContext.getOrCreate(conf)
    val sqlContext = new HiveContext(sc)

    // =================================================
    sqlContext.sql(
      """
        | SELECT
        |  deptno as no,
        |  SUM(sal) as sum_sal,
        |  AVG(sal) as avg_sal,
        |  SUM(mgr) as sum_mgr,
        |  AVG(mgr) as avg_mgr
        | FROM hadoop09.emp
        | GROUP BY deptno
        | ORDER BY deptno DESC
      """.stripMargin).show()

    //=================================================
    // 读取数据形成DataFrame,并缓存DataFrame
    val df = sqlContext.read.table("hadoop09.emp")
    df.cache()
    //=================================================
    import sqlContext.implicits._
    import org.apache.spark.sql.functions._
   
    //=================================================GroupBy语句
    //这种方式不推荐使用,下面也说明了问题
    df.groupBy("deptno").agg(
      "sal" -> "min", // 求min(sal)
      "sal" -> "max", // 求max(sal) ===> 会覆盖同列的其他聚合函数,解决方案:重新命名
      "mgr" -> "max" // 求max(mgr)
    ).show()

    sqlContext.udf.register("selfAvg", AvgUDAF)
    df.groupBy("deptno").agg(
      "sal" -> "selfAvg"
    ).toDF("deptno", "self_avg_sal").show()

    df.groupBy("deptno").agg(
      min("sal").as("min_sal"),
      max("sal").as("max_sal"),
      max("mgr")
    ).where("min_sal > 1200").show()

  }
}

 

 9.sort、orderBy排序

1   //=================================================数据排序
2     // sort、orderBy ==> 全局有序
3     // repartition ==> 局部数据有序
4     df.sort("sal").select("empno", "sal").show()
5     df.repartition(3).sort($"sal".desc).select("empno", "sal").show()
6     df.repartition(3).orderBy($"sal".desc).select("empno", "sal").show()
7     df.repartition(3).sortWithinPartitions($"sal".desc).select("empno", "sal").show()

 

10.窗口函数

 1 //=================================================Hive的窗口分析函数
 2     // 必须使用HiveContext来构建DataFrame
 3     // 通过row_number函数来实现分组排序TopN的需求: 先按照某些字段进行数据分区,然后分区的数据在分区内进行topN的获取
 4     val window = Window.partitionBy("deptno").orderBy($"sal".desc)
 5     df.select(
 6       $"empno",
 7       $"ename",
 8       $"deptno",
 9       row_number().over(window).as("rnk")
10     ).where("rnk <= 3").show()

 

二:总程序总览

  1 package com.scala.it
  2 
  3 
  4 import org.apache.spark.sql.expressions.Window
  5 import org.apache.spark.sql.hive.HiveContext
  6 import org.apache.spark.{SparkConf, SparkContext}
  7 
  8 import scala.math.BigDecimal.RoundingMode
  9 
 10 object SparkSQLDSLDemo {
 11   def main(args: Array[String]): Unit = {
 12     val conf = new SparkConf()
 13       .setMaster("local[*]")
 14       .setAppName("dsl")
 15     val sc = SparkContext.getOrCreate(conf)
 16     val sqlContext = new HiveContext(sc)
 17 
 18     // =================================================
 19     sqlContext.sql(
 20       """
 21         | SELECT
 22         |  deptno as no,
 23         |  SUM(sal) as sum_sal,
 24         |  AVG(sal) as avg_sal,
 25         |  SUM(mgr) as sum_mgr,
 26         |  AVG(mgr) as avg_mgr
 27         | FROM hadoop09.emp
 28         | GROUP BY deptno
 29         | ORDER BY deptno DESC
 30       """.stripMargin).show()
 31 
 32     //=================================================
 33     // 读取数据形成DataFrame,并缓存DataFrame
 34     val df = sqlContext.read.table("hadoop09.emp")
 35     df.cache()
 36     //=================================================
 37     import sqlContext.implicits._
 38     import org.apache.spark.sql.functions._
 39 
 40     //=================================================对上面sql进行DSL
 41     df.select("deptno", "sal", "mgr")
 42       .groupBy("deptno")
 43       .agg(
 44         sum("sal").as("sum_sal"),
 45         avg("sal").as("avg_sal"),
 46         sum("mgr").as("sum_mgr"),
 47         avg("mgr").as("avg_mgr")
 48       )
 49       .orderBy($"deptno".desc)
 50       .show()
 51 
 52     //=================================================Select语句
 53     df.select("empno", "ename", "deptno").show()
 54     df.select(col("empno").as("id"), $"ename".as("name"), df("deptno")).show()
 55     df.select($"empno".as("id"), substring($"ename", 0, 1).as("name")).show()
 56     df.selectExpr("empno as id", "substring(ename,0,1) as name").show()
 57 
 58     //使用自定义的函数
 59     sqlContext.udf.register(
 60       "doubleValueFormat", // 自定义函数名称
 61       (value: Double, scale: Int) => {
 62         // 自定义函数处理的代码块
 63         BigDecimal.valueOf(value).setScale(scale, RoundingMode.HALF_DOWN).doubleValue()
 64       })
 65     df.selectExpr("doubleValueFormat(sal,2)").show()
 66 
 67     //=================================================Where语句
 68     df.where("sal > 1000 and sal < 2000").show()
 69     df.where($"sal" > 1000 && $"sal" < 2000).show()
 70 
 71     //=================================================GroupBy语句
 72     //这种方式不推荐使用,下面也说明了问题
 73     df.groupBy("deptno").agg(
 74       "sal" -> "min", // 求min(sal)
 75       "sal" -> "max", // 求max(sal) ===> 会覆盖同列的其他聚合函数,解决方案:重新命名
 76       "mgr" -> "max" // 求max(mgr)
 77     ).show()
 78 
 79     sqlContext.udf.register("selfAvg", AvgUDAF)
 80     df.groupBy("deptno").agg(
 81       "sal" -> "selfAvg"
 82     ).toDF("deptno", "self_avg_sal").show()
 83 
 84     df.groupBy("deptno").agg(
 85       min("sal").as("min_sal"),
 86       max("sal").as("max_sal"),
 87       max("mgr")
 88     ).where("min_sal > 1200").show()
 89 
 90 
 91     //=================================================数据排序
 92     // sort、orderBy ==> 全局有序
 93     // repartition ==> 局部数据有序
 94     df.sort("sal").select("empno", "sal").show()
 95     df.repartition(3).sort($"sal".desc).select("empno", "sal").show()
 96     df.repartition(3).orderBy($"sal".desc).select("empno", "sal").show()
 97     df.repartition(3).sortWithinPartitions($"sal".desc).select("empno", "sal").show()
 98 
 99     //=================================================Hive的窗口分析函数
100     // 必须使用HiveContext来构建DataFrame
101     // 通过row_number函数来实现分组排序TopN的需求: 先按照某些字段进行数据分区,然后分区的数据在分区内进行topN的获取
102     val window = Window.partitionBy("deptno").orderBy($"sal".desc)
103     df.select(
104       $"empno",
105       $"ename",
106       $"deptno",
107       row_number().over(window).as("rnk")
108     ).where("rnk <= 3").show()
109   }
110 }

 

以上是关于049 DSL语句的主要内容,如果未能解决你的问题,请参考以下文章

DSL-让你的 Ruby 代码更优秀

[elk]elasticsearch dsl语句

ES中查询语句DSL(domain specific language)

如何在使用Java DSL的camel Header中设置没有扩展名的文件名?

3.elasticsearch文档查询dsl

3.elasticsearch文档查询dsl