题解51nod 1685第K大区间2

Posted twilight-sx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解51nod 1685第K大区间2相关的知识,希望对你有一定的参考价值。

  二分答案+++++++(??ω??) 感觉这个思路好像挺常用的:求第(K) 大 --> 二分第 (K) 大的值 --> 检验当前二分的值排名是第几。前提:排名与数值大小成单调性变化。于是对于这题我们也不例外,二分一下最后中位数的值是多少,把数组中的值 (> K) 的变成 (1),(< K) 的变成 (-1), (= K) 的为 (0)。那么,一个中位数为 (K) 的区间区间和为 (0), 一个中位数(< K) 的区间和 (< 0), (> K) 则 (> 0)。

  于是求区间中位数 (> K) 和 (=K) 的区间就转化为了求满足条件的区间值的区间。这个只需要用树状数组维护一下就好啦。由于有奇数的规定,我们开两个树状数组分别代表偶数下标和奇数下标,以保证求得的区间长度为奇数。以及因为有负数,所以将数组整体向后平移即可。

#include<bits/stdc++.h>
using namespace std;
#define maxn 350000
#define INF INT_MAX
#define lowbit(i) (i & (-i))
int n, K, ans, a[maxn], A[maxn], sum[maxn];
int C[2][maxn], b[maxn], D = 1e5;

int read()
{
    int x = 0, k = 1;
    char c; c = getchar();
    while(c < 0 || c > 9) { if(c == -) k = -1; c = getchar(); }
    while(c >= 0 && c <= 9) x = x * 10 + c - 0, c = getchar();
    return x * k;
}

void Update(int x, int opt)
{
    for(int i = x; i < maxn; i += lowbit(i))
        C[opt][i] += 1;
}

int Query(int x, int opt)
{
    int ret = 0;
    for(int i = x; i; i -= lowbit(i)) 
        ret += C[opt][i];
    return ret;
}

int Check(int mid)
{
    memset(C, 0, sizeof(C));
    int ans1 = 0, ans2 = 0; Update(D, 0);
    for(int i = 1; i <= n; i ++)
    {
        if(a[i] < mid) A[i] = -1;
        else if(a[i] > mid) A[i] = 1;
        else A[i] = 0;
        sum[i] = sum[i - 1] + A[i];
        Update(sum[i] + D, i % 2);
        ans1 += Query(sum[i] + D, (i % 2) ^ 1) - Query(sum[i] + D - 1, (i % 2) ^ 1);
        ans2 += Query(sum[i] + D - 1, (i % 2) ^ 1);
    }
    if(K > ans1 + ans2) return 1;
    else if(K < ans2) return 2;
    else return 0;
}

int main()
{
    n = read(), K = read();
    for(int i = 1; i <= n; i ++) a[i] = b[i] = read();
    sort(b + 1, b + 1 + n);
    int l = 1, r = n;
    while(l <= r)
    {
        int mid = (l + r) >> 1;
        int k = Check(b[mid]);
        if(k == 1) r = mid - 1;
        else if(k == 2) l = mid + 1;
        else { ans = b[mid]; break; }
    }
    printf("%d
", ans);
    return 0;
}

 

以上是关于题解51nod 1685第K大区间2的主要内容,如果未能解决你的问题,请参考以下文章

题解51nod 1686第K大区间

51nod 第K大区间2(二分+树状数组)

51nod 1686 第k大区间

51nod-1686 第K大区间(二分+尺取法)

51Nod——T 1686 第K大区间

51nod p1175 区间中第K大的数