LCS(详解)
Posted moomcake
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LCS(详解)相关的知识,希望对你有一定的参考价值。
一,问题描述
给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence)。比如字符串1:BDCABA;字符串2:ABCBDAB
则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA
二,算法求解
这是一个动态规划的题目。对于可用动态规划求解的问题,一般有两个特征:①最优子结构;②重叠子问题
①最优子结构
设 X=(x1,x2,.....xn) 和 Y={y1,y2,.....ym} 是两个序列,将 X 和 Y 的最长公共子序列记为LCS(X,Y)
找出LCS(X,Y)就是一个最优化问题。因为,我们需要找到X 和 Y中最长的那个公共子序列。而要找X 和 Y的LCS,首先考虑X的最后一个元素和Y的最后一个元素。
1)如果 xn=ym,即X的最后一个元素与Y的最后一个元素相同,这说明该元素一定位于公共子序列中。因此,现在只需要找:LCS(Xn-1,Ym-1)
LCS(Xn-1,Ym-1)就是原问题的一个子问题。为什么叫子问题?因为它的规模比原问题小。(小一个元素也是小嘛....)
为什么是最优的子问题?因为我们要找的是Xn-1 和 Ym-1 的最长公共子序列啊。。。最长的!!!换句话说,就是最优的那个。(这里的最优就是最长的意思)
2)如果xn != ym,这下要麻烦一点,因为它产生了两个子问题:LCS(Xn-1,Ym) 和 LCS(Xn,Ym-1)
因为序列X 和 序列Y 的最后一个元素不相等嘛,那说明最后一个元素不可能是最长公共子序列中的元素嘛。(都不相等了,怎么公共嘛)。
LCS(Xn-1,Ym)表示:最长公共序列可以在(x1,x2,....x(n-1)) 和 (y1,y2,...yn)中找。
LCS(Xn,Ym-1)表示:最长公共序列可以在(x1,x2,....xn) 和 (y1,y2,...y(n-1))中找。
求解上面两个子问题,得到的公共子序列谁最长,那谁就是 LCS(X,Y)。用数学表示就是:
LCS=max{LCS(Xn-1,Ym),LCS(Xn,Ym-1)}
由于条件 1) 和 2) 考虑到了所有可能的情况。因此,我们成功地把原问题 转化 成了 三个规模更小的子问题。
②重叠子问题
重叠子问题是啥?就是说原问题 转化 成子问题后, 子问题中有相同的问题。咦?我怎么没有发现上面的三个子问题中有相同的啊????
OK,来看看,原问题是:LCS(X,Y)。子问题有 ?LCS(Xn-1,Ym-1) ?LCS(Xn-1,Ym) ?LCS(Xn,Ym-1)
初一看,这三个子问题是不重叠的。可本质上它们是重叠的,因为它们只重叠了一大部分。举例:
第二个子问题:LCS(Xn-1,Ym) 就包含了:问题?LCS(Xn-1,Ym-1),为什么?
因为,当Xn-1 和 Ym 的最后一个元素不相同时,我们又需要将LCS(Xn-1,Ym)进行分解:分解成:LCS(Xn-1,Ym-1) 和 LCS(Xn-2,Ym)
也就是说:在子问题的继续分解中,有些问题是重叠的。
由于像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。因为采用递归,它重复地求解了子问题啊。而且注意哦,所有子问题加起来的个数 可是指数级的哦。。。。
这篇文章中就演示了一个递归求解重叠子问题的示例。
那么问题来了,你说用递归求解,有指数级个子问题,故时间复杂度是指数级。这指数级个子问题,难道用了动态规划,就变成多项式时间了??
呵呵哒。。。。
关键是采用动态规划时,并不需要去一 一 计算那些重叠了的子问题。或者说:用了动态规划之后,有些子问题 是通过 “查表“ 直接得到的,而不是重新又计算一遍得到的。废话少说:举个例子吧!比如求Fib数列。关于Fib数列,可参考:
求fib(5),分解成了两个子问题:fib(4) 和 fib(3),求解fib(4) 和 fib(3)时,又分解了一系列的小问题....
从图中可以看出:根的左右子树:fib(4) 和 fib(3)下,是有很多重叠的!!!比如,对于 fib(2),它就一共出现了三次。如果用递归来求解,fib(2)就会被计算三次,而用DP(Dynamic Programming)动态规划,则fib(2)只会计算一次,其他两次则是通过”查表“直接求得。而且,更关键的是:查找求得该问题的解之后,就不需要再继续去分解该问题了。而对于递归,是不断地将问题分解,直到分解为 基准问题(fib(1) 或者 fib(0))
说了这么多,还是要写下最长公共子序列的递归式才完整。借用网友的一张图吧:)
c[i,j]表示:(x1,x2....xi) 和 (y1,y2...yj) 的最长公共子序列的长度。(是长度哦,就是一个整数嘛)。公式的具体解释可参考《算法导论》动态规划章节
1 #include<stdio.h> 2 #include<string.h> 3 #include<algorithm> 4 #include<stack> 5 #include<queue> 6 #include<iostream> 7 #include<map> 8 #include<vector> 9 #define Inf 0x3f3f3f3f 10 #define PI acos(-1.0) 11 using namespace std; 12 int str[1234]; 13 int ans[1244]; 14 int dp[1234][1234]; 15 int len=1; 16 int main() 17 { 18 char str1[1234],str2[1234]; 19 int len1,len2; 20 while(scanf("%s %s",&str1,&str2)!=-1){ 21 len1=strlen(str1); 22 for(int i=len1;i>=1;i--) 23 { 24 str1[i]=str1[i-1]; 25 } 26 len2=strlen(str2); 27 for(int i=len2;i>=1;i--) 28 { 29 str2[i]=str2[i-1]; 30 } 31 memset(dp,0,sizeof(dp)); 32 for(int i=1; i<=len1; i++) 33 for(int j=1; j<=len2; j++) 34 { 35 if(str1[i]==str2[j]) 36 { 37 dp[i][j]=dp[i-1][j-1]+1; 38 } 39 else{ 40 41 dp[i][j]=max(dp[i][j-1],dp[i-1][j]); 42 } 43 } 44 printf("%d ",dp[len1][len2]); 45 } 46 return 0; 47 }
以上是关于LCS(详解)的主要内容,如果未能解决你的问题,请参考以下文章
动态规划解最长公共子序列(LCS)问题 (附可打印LCS完整代码)
14.VisualVM使用详解15.VisualVM堆查看器使用的内存不足19.class文件--文件结构--魔数20.文件结构--常量池21.文件结构访问标志(2个字节)22.类加载机制概(代码片段