CF892/problem/C
Posted mch5201314
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF892/problem/C相关的知识,希望对你有一定的参考价值。
题目传送门:
[http://codeforces.com/contest/892/problem/C]
题意:
给你一个长度为n的数组,相邻两个元素的GCD(最大公约数)可以取代二者的任意一个,问你最少需要多少个操作数使得所有元素变为1。
如果不可以全化为1,输出0。
思路:
GCD性质:gcd(gcd(a,b),gcd(b,c))=gcd(gcd(a,b),c)=gcd(a,gcd(b,c))。先特判一下初始数组有1这个元素,那么假设有sum1个,输出,n-sum1就好了,因为1可以扩展到其他位置。否则,凑出一个1。怎么凑?
首先明确找的是相邻两个数的最大公约数,若相邻两个数的最大公约数等于1了就结束了,若不等于1,替换其中一个,在和相邻数求gcd,对于一个数来说,它被替换成 和左边的数的gcd,或和右边数的gcd都一样,举个例子:2,6,9 任何相邻两个数的gcd都不为1,看6这个数的位置,它可以被替换成和2的gcd,再和9求gcd,或被替换成和9的gcd,再和2求gcd,你看看这两种情况的结果是一样吧;只需贪心地找每次更新最小即可。
尤其注意n==1,这个时候如果,该元素是1,就是特判了,否则不可能变为1,因为没有其他元素和它GCD了
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int gcd(int x,int y){
return x ? gcd(y%x,x) : y;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n,i,j,ans,sum;
int a[2005];
while(cin>>n){
sum=0,ans=1e9;
for(i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]==1) sum++;
}
if(sum>0){
cout<<n-sum<<endl;
continue;
}
for(i=1;i<=n;i++)
{
int tep=a[i];
for(j=i+1;j<=n;j++){
tep=gcd(tep,a[j]);
if(tep==1){
ans=min(ans,j-i);//记录化为1的最小步数
break;
}
}
}
if(n==1||ans==1e9) cout<<-1<<endl;
else
cout<<ans+n-1<<endl;
}
return 0;
}
以上是关于CF892/problem/C的主要内容,如果未能解决你的问题,请参考以下文章